期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants 被引量:5
1
作者 Wei Zhi Xiaohua Wang +9 位作者 Dong Sun Taijun Chen Bo Yuan Xiangfeng Li Xuening Chen Jianxin Wang Zhao Xie Xiangdong Zhu Kai Zhang Xingdong Zhang 《Bioactive Materials》 SCIE 2022年第5期240-253,共14页
So far,how to achieve the optimal regenerative repair of large load-bearing bone defects using artificial bone grafts is a huge challenge in clinic.In this study,a strategy of combining osteoinductive biphasic calcium... So far,how to achieve the optimal regenerative repair of large load-bearing bone defects using artificial bone grafts is a huge challenge in clinic.In this study,a strategy of combining osteoinductive biphasic calcium phosphate(BCP)bioceramic scaffolds with intramedullary nail fixation for creating stable osteogenic microenvironment was applied to repair large segmental bone defects(3.0 cm in length)in goat femur model.The material characterization results showed that the BCP scaffold had the initial compressive strength of over 2.0 MPa,and total porosity of 84%.The cell culture experiments demonstrated that the scaffold had the excellent ability to promote the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells(BMSCs).The in vivo results showed that the intramedullary nail fixation maintained the initial stability and structural integrity of the implants at early stage,promoting the osteogenic process both guided and induced by the BCP scaffolds.At 9 months postoperatively,good integration between the implants and host bone was observed,and a large amount of newborn bones formed,accompanying with the degradation of the material.At 18 months postoperatively,almost the complete new bone substitution in the defect area was achieved.The maximum bending strength of the repaired bone defects reached to the 100% of normal femur at 18 months post-surgery.Our results demonstrated the good potential of osteoinductive BCP bioceramics in the regenerative repair of large load-bearing bone defects.The current study could provide an effective method to treat the clinical large segmental bone defects. 展开更多
关键词 Calcium phosphate bioceramics Large segmental bone defects Bone regenerative repair OSTEOINDUCTION Mechanical stability
原文传递
Collagen-based injectable and self-healing hydrogel with multifunction for regenerative repairment of infected wounds
2
作者 Haojie Gu Han Li +2 位作者 Liren Wei Jian Lu Qingrong Wei 《Regenerative Biomaterials》 SCIE EI 2023年第1期626-639,共14页
At present,the development trend of dressing materials is being multifunctional for convenient and long-term nursing care process of some complicated wounds.Here,basing on the theory of wound moist healing,an injectab... At present,the development trend of dressing materials is being multifunctional for convenient and long-term nursing care process of some complicated wounds.Here,basing on the theory of wound moist healing,an injectable and self-healing hydrogel comprising of collagen(COL),chitosan(CS)and oxidation modified Konjac glucomannan(OKGM),which acts as a macromolecular cross-linker to construct dynamic Schiff-base bonds was smartly designed.The strategy of introducing the silver nanoparticles(Ag NPs)into the COL-CS-OKGM hydrogel matrix achieved a markedly enhanced antibacterial activity derived from the synergistical effect between the Ag^(+)and the mild photothermal efficacy of Ag NPs,which also improved the local capillary blood circulation of the wound area to further facilitate wound healing process.The excellent syringeability and self-healing behaviors endowed the COL-CS-OKGM-Ag hydrogel with self-adapting ability for the wounds with irregular and large area needing frequent applying and changing without secondary injuries.In vitro and in vivo evaluations verified that so-designed COL-CS-OKGM-Ag hydrogel also with hemostatic performance is a promising multifunctional dressing for the treatments of infected wound with not only good biocompatibility and convenient use,but also with desired regenerative healing prognoses benefited from hydrogel moist environment and physiotherapy. 展开更多
关键词 collagen injectable and self-healing hydrogel regenerative repair wounds
原文传递
Current research on pharmacologic and regenerative therapies for osteoarthritis 被引量:9
3
作者 Wei Zhang Hongwei Ouyang +1 位作者 Crispin R Dass Jiake Xu 《Bone Research》 SCIE CAS CSCD 2015年第4期185-198,共14页
Osteoarthritis(OA)is a degenerative joint disorder commonly encountered in clinical practice,and is the leading cause of disability in elderly people.Due to the poor self-healing capacity of articular cartilage and ... Osteoarthritis(OA)is a degenerative joint disorder commonly encountered in clinical practice,and is the leading cause of disability in elderly people.Due to the poor self-healing capacity of articular cartilage and lack of specific diagnostic biomarkers,OA is a challenging disease with limited treatment options.Traditional pharmacologic therapies such as acetaminophen,non-steroidal anti-inflammatory drugs,and opioids are effective in relieving pain but are incapable of reversing cartilage damage and are frequently associated with adverse events.Current research focuses on the development of new OA drugs(such as sprifermin/recombinant human fibroblast growth factor-18,tanezumab/monoclonal antibody againstβ-nerve growth factor),which aims for more effectiveness and less incidence of adverse effects than the traditional ones.Furthermore,regenerative therapies(such as autologous chondrocyte implantation(ACI),new generation of matrix-induced ACI,cell-free scaffolds,induced pluripotent stem cells(iPS cells or iPSCs),and endogenous cell homing)are also emerging as promising alternatives as they have potential to enhance cartilage repair,and ultimately restore healthy tissue.However,despite currently available therapies and research advances,there remain unmet medical needs in the treatment of OA.This review highlights current research progress on pharmacologic and regenerative therapies for OA including key advances and potential limitations. 展开更多
关键词 cartilage regenerative articular challenging pluripotent disability restore repair degenerative advances
下载PDF
A Systematic Review of Animal and Clinical Studies on the Use of Scaffolds for Urethral Repair 被引量:3
4
作者 祁娜 李文娇 田虹 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第1期111-117,共7页
Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in... Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in animal studies, but clinical studies on use of scaffolds for urethral repair are scarce. The aim of this study was to review recent animal and clinical studies on the use of different scaffolds for urethral repair, and to evaluate these scaffolds based on the evidence from these studies. Pub Med and OVID databases were searched to identify relevant studies, in conjunction with further manual search. Studies that met the inclusion criteria were systematically evaluated. Of 555 identified studies, 38 were included for analysis. It was found that in both animal and clinical studies, scaffolds seeded with cells were used for repair of large segmental defects of the urethra, such as in tubular urethroplasty. When the defect area was small, cell-free scaffolds were more likely to be applied. A lot of pre-clinical and limited clinical evidence showed that natural or artificial materials could be used as scaffolds for urethral repair. Urinary tissue engineering is still in the immature stage, and the safety, efficacy, cost-effectiveness of the scaffolds are needed for further study. 展开更多
关键词 material/scaffold urethral repair tissue engineering/regenerative medicine animal models clinical studies
下载PDF
A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis 被引量:4
5
作者 Xiaofang Wang Yufei Ma +7 位作者 Jie Chen Yujiao Liu Guangliang Liu Pengtao Wang Bo Wang Makoto M.Taketo Teresita Bellido Xiaolin Tu 《Bioactive Materials》 SCIE CSCD 2023年第3期110-128,共19页
Cell source is the key to decellularized matrix(DM)strategy.This study compared 3 cell types,osteocytes with/without dominant active Wnt/β-catenin signaling(daCO and WTO)and bone marrow stromal cells(BMSCs)for their ... Cell source is the key to decellularized matrix(DM)strategy.This study compared 3 cell types,osteocytes with/without dominant active Wnt/β-catenin signaling(daCO and WTO)and bone marrow stromal cells(BMSCs)for their DMs in bone repair.Decellularization removes all organelles and>95%DNA,and retained>74%collagen and>71%GAG,maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM.DM produced higher cell survival rate(90%)and higher proliferative activity.In vitro,daCO-DM induces more and longer stress fibers in BMSCs,conducive to cell adhesion,spreading,and osteogenic differentiation.8-wk after implantation of the critical-sized parietal bone defect model,daCO-DM formed tight structures,composed of a large number of densely-arranged type-I collagen under polarized light microscope,which is similar to and integrated with host bone.BV/TV(>54%)was 1.5,2.9,and 3.5 times of WTO-DM,BMSC-DM,and none-DM groups,and N.Ob/T.Ar(3.2×10^(2)/mm^(2))was 1.7,2.9,and 3.3 times.At 4-wk,daCO-DM induced osteoclastogenesis,2.3 times higher than WTO-DM;but BMSC-DM or none-DM didn't.daCO-DM increased the expression of RANKL and MCSF,Vegfa and Angpt1,and Ngf in BMSCs,which contributes to osteoclastogenesis,angiogenesis,and neurogenesis,respectively.daCO-DM promoted H-type vessel formation and nerve markersβ3-tubulin and NeuN expression.Conclusion:daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects.These features are expected to achieve the effect of autologous bone transplantation,suitable for transformation application. 展开更多
关键词 Decellularized matrix OSTEOCYTE Wnt signaling 3D printing regenerative repair Metabolic and neurovascular organoid bone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部