There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place i...The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques.展开更多
Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant f...Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant for sustainable agri-culture.Manual system to monitor the diseases in plant is time consuming and report a lot of errors.There is high demand for technology to detect the plant dis-eases automatically.Recently image processing approach and deep learning approach are highly invited in detection of plant diseases.The diseases like late blight,bacterial spots,spots on Septoria leaf and yellow leaf curved are widely found in plants.These are the main reasons to affects the plants life and yield.To identify the diseases earliest,our research presents the hybrid method by com-bining the region based convolutional neural network(RCNN)and region based fully convolutional networks(RFCN)for classifying the diseases.First the leaf images of plants are collected and preprocessed to remove noisy data in image.Further data normalization,augmentation and removal of background noises are done.The images are divided as testing and training,training images are fed as input to deep learning architecture.First,we identify the region of interest(RoI)by using selective search.In every region,feature of convolutional neural network(CNN)is extracted independently for further classification.The plants such as tomato,potato and bell pepper are taken for this experiment.The plant input image is analyzed and classify as healthy plant or unhealthy plant.If the image is detected as unhealthy,then type of diseases the plant is affected will be displayed.Our proposed technique achieves 98.5%of accuracy in predicting the plant diseases.展开更多
Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood v...Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods.展开更多
Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and agi...Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and aging. This paper innovates as it proposes a deep learning and set-based approach to face recognition subject to aging. The images for each subject taken at various times are treated as a single set, which is then compared to sets of images belonging to other subjects. Facial features are extracted using a convolutional neural network characteristic of deep learning. Our experimental results show that set-based recognition performs better than the singleton-based approach for both face identification and face verification. We also find that by using set-based recognition, it is easier to recognize older subjects from younger ones rather than younger subjects from older ones.展开更多
Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Parti...Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization(SPSOM)and Incremental Deep Convolution Neural Networks(IDCNN)for detecting multiple objects.However,the study considered opticalflows resulting in assessing motion contrasts.Existing methods have issue with accuracy and error rates in motion contrast detection.Hence,the overall object detection performance is reduced significantly.Thus,consideration of object motions in videos efficiently is a critical issue to be solved.To overcome the above mentioned problems,this research work proposes a method involving ensemble approaches to and detect objects efficiently from video streams.This work uses a system modeled on swarm optimization and ensemble learning called Spatiotemporal Glowworm Swarm Optimization Model(SGSOM)for detecting multiple significant objects.A steady quality in motion contrasts is maintained in this work by using Chebyshev distance matrix.The proposed system achieves global optimization in its multiple object detection by exploiting spatial/temporal cues and local constraints.Its experimental results show that the proposed system scores 4.8%in Mean Absolute Error(MAE)while achieving 86%in accuracy,81.5%in precision,85%in recall and 81.6%in F-measure and thus proving its utility in detecting multiple objects.展开更多
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav...Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images.展开更多
Desertification has become a global threat and caused a crisis,especially in Middle Eastern countries,such as Saudi Arabia.Makkah is one of the most important cities in Saudi Arabia that needs to be protected from des...Desertification has become a global threat and caused a crisis,especially in Middle Eastern countries,such as Saudi Arabia.Makkah is one of the most important cities in Saudi Arabia that needs to be protected from desertification.The vegetation area in Makkah has been damaged because of desertification through wind,floods,overgrazing,and global climate change.The damage caused by desertification can be recovered provided urgent action is taken to prevent further degradation of the vegetation area.In this paper,we propose an automatic desertification detection system based on Deep Learning techniques.Aerial images are classified using Convolutional Neural Networks(CNN)to detect land state variation in real-time.CNNs have been widely used for computer vision applications,such as image classification,image segmentation,and quality enhancement.The proposed CNN model was trained and evaluated on the Arial Image Dataset(AID).Compared to state-of-the-art methods,the proposed model has better performance while being suitable for embedded implementation.It has achieved high efficiency with 96.47% accuracy.In light of the current research,we assert the appropriateness of the proposed CNN model in detecting desertification from aerial images.展开更多
To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented...To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented. This scheme is region-based and mainly focuses on two issues. Firstly, an appropriate segmentation algorithm is developed to partition an image into some irregular regions and tidy contours, where the crucial regions corresponding to objects are retained and a lot of tiny parts are eliminated. The irregular regions and contours are coded using different methods respectively in the next step. The other issue is the coding method of contours where an efficient and novel chain code is employed. This scheme tries to find a compromise between the quality of reconstructed images and the compression ratio. Some principles and experiments are conducted and the results show its higher performance compared with other compression technologies, in terms of higher quality of reconstructed images, higher compression ratio and less time consuming.展开更多
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese...Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.展开更多
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base...The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.展开更多
With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of...With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches.展开更多
Recent patterns of human sentiments are highly influenced by emoji based sentiments(EBS).Social media users are widely using emoji based sentiments(EBS)in between text messages,tweets and posts.Although tiny pictures ...Recent patterns of human sentiments are highly influenced by emoji based sentiments(EBS).Social media users are widely using emoji based sentiments(EBS)in between text messages,tweets and posts.Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model;but due to the wide range of dissimilar,heterogynous and complex patterns of emoji with similarmeanings(SM)have become one of the significant research areas of machine vision.This paper proposes an approach to provide meticulous assistance to social media application(SMA)users to classify the EBS sentiments.Proposed methodology consists upon three layerswhere first layer deals with data cleaning and feature selection techniques to detect dissimilar emoji patterns(DEP)with similar meanings(SM).In first sub step we input set of emoji,in second sub step every emoji has to qualify user defined threshold,in third sub step algorithm detects every emoji by considering as objects and in fourth step emoji images are cropped,after data cleaning these tiny images are saved as emoji images.In second step we build classification model by using convolutional neural networks(CNN)to explore hidden knowledge of emoji datasets.In third step we present results visualization by using confusion matrix and other estimations.This paper contributes(1)data cleaning method to detect EBS;(2)highest classification accuracy for emoji classification measured as 97.63%.展开更多
In order to avoid the problem of poor illumination characteristics and inaccurate positioning accuracy, this paper proposed a pedestrian detection algorithm suitable for low-light environments. The algorithm first app...In order to avoid the problem of poor illumination characteristics and inaccurate positioning accuracy, this paper proposed a pedestrian detection algorithm suitable for low-light environments. The algorithm first applied the multi-scale Retinex image enhancement algorithm to the sample pre-processing of deep learning to improve the image resolution. Then the paper used the faster regional convolutional neural network to train the pedestrian detection model, extracted the pedestrian characteristics, and obtained the bounding boxes through classification and position regression. Finally, the pedestrian detection process was carried out by introducing the Soft-NMS algorithm, and the redundant bounding box was eliminated to obtain the best pedestrian detection position. The experimental results showed that the proposed detection algorithm achieves an average accuracy of 89.74% on the low-light dataset, and the pedestrian detection effect was more significant.展开更多
The gender recognition problem has attracted the attention of the computer vision community due to its importance in many applications(e.g.,sur-veillance and human–computer interaction[HCI]).Images of varying levels ...The gender recognition problem has attracted the attention of the computer vision community due to its importance in many applications(e.g.,sur-veillance and human–computer interaction[HCI]).Images of varying levels of illumination,occlusion,and other factors are captured in uncontrolled environ-ments.Iris and facial recognition technology cannot be used on these images because iris texture is unclear in these instances,and faces may be covered by a scarf,hijab,or mask due to the COVID-19 pandemic.The periocular region is a reliable source of information because it features rich discriminative biometric features.However,most existing gender classification approaches have been designed based on hand-engineered features or validated in controlled environ-ments.Motivated by the superior performance of deep learning,we proposed a new method,PeriGender,inspired by the design principles of the ResNet and DenseNet models,that can classify gender using features from the periocular region.The proposed system utilizes a dense concept in a residual model.Through skip connections,it reuses features on different scales to strengthen dis-criminative features.Evaluations of the proposed system on challenging datasets indicated that it outperformed state-of-the-art methods.It achieved 87.37%,94.90%,94.14%,99.14%,and 95.17%accuracy on the GROUPS,UFPR-Periocular,Ethnic-Ocular,IMP,and UBIPr datasets,respectively,in the open-world(OW)protocol.It further achieved 97.57%and 93.20%accuracy for adult periocular images from the GROUPS dataset in the closed-world(CW)and OW protocols,respectively.The results showed that the middle region between the eyes plays a crucial role in the recognition of masculine features,and feminine features can be identified through the eyebrow,upper eyelids,and corners of the eyes.Furthermore,using a whole region without cropping enhances PeriGender’s learning capability,improving its understanding of both eyes’global structure without discontinuity.展开更多
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘The concept of classification through deep learning is to build a model that skillfully separates closely-related images dataset into different classes because of diminutive but continuous variations that took place in physical systems over time and effect substantially.This study has made ozone depletion identification through classification using Faster Region-Based Convolutional Neural Network(F-RCNN).The main advantage of F-RCNN is to accumulate the bounding boxes on images to differentiate the depleted and non-depleted regions.Furthermore,image classification’s primary goal is to accurately predict each minutely varied case’s targeted classes in the dataset based on ozone saturation.The permanent changes in climate are of serious concern.The leading causes beyond these destructive variations are ozone layer depletion,greenhouse gas release,deforestation,pollution,water resources contamination,and UV radiation.This research focuses on the prediction by identifying the ozone layer depletion because it causes many health issues,e.g.,skin cancer,damage to marine life,crops damage,and impacts on living being’s immune systems.We have tried to classify the ozone images dataset into two major classes,depleted and non-depleted regions,to extract the required persuading features through F-RCNN.Furthermore,CNN has been used for feature extraction in the existing literature,and those extricated diverse RoIs are passed on to the CNN for grouping purposes.It is difficult to manage and differentiate those RoIs after grouping that negatively affects the gathered results.The classification outcomes through F-RCNN approach are proficient and demonstrate that general accuracy lies between 91%to 93%in identifying climate variation through ozone concentration classification,whether the region in the image under consideration is depleted or non-depleted.Our proposed model presented 93%accuracy,and it outperforms the prevailing techniques.
基金Supporting Project Number(RSP-2021/323),King Saud University,Riyadh,Saudi Arabia。
文摘Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant for sustainable agri-culture.Manual system to monitor the diseases in plant is time consuming and report a lot of errors.There is high demand for technology to detect the plant dis-eases automatically.Recently image processing approach and deep learning approach are highly invited in detection of plant diseases.The diseases like late blight,bacterial spots,spots on Septoria leaf and yellow leaf curved are widely found in plants.These are the main reasons to affects the plants life and yield.To identify the diseases earliest,our research presents the hybrid method by com-bining the region based convolutional neural network(RCNN)and region based fully convolutional networks(RFCN)for classifying the diseases.First the leaf images of plants are collected and preprocessed to remove noisy data in image.Further data normalization,augmentation and removal of background noises are done.The images are divided as testing and training,training images are fed as input to deep learning architecture.First,we identify the region of interest(RoI)by using selective search.In every region,feature of convolutional neural network(CNN)is extracted independently for further classification.The plants such as tomato,potato and bell pepper are taken for this experiment.The plant input image is analyzed and classify as healthy plant or unhealthy plant.If the image is detected as unhealthy,then type of diseases the plant is affected will be displayed.Our proposed technique achieves 98.5%of accuracy in predicting the plant diseases.
文摘Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods.
文摘Biometric security systems based on facial characteristics face a challenging task due to variability in the intrapersonal facial appearance of subjects traced to factors such as pose, illumination, expression and aging. This paper innovates as it proposes a deep learning and set-based approach to face recognition subject to aging. The images for each subject taken at various times are treated as a single set, which is then compared to sets of images belonging to other subjects. Facial features are extracted using a convolutional neural network characteristic of deep learning. Our experimental results show that set-based recognition performs better than the singleton-based approach for both face identification and face verification. We also find that by using set-based recognition, it is easier to recognize older subjects from younger ones rather than younger subjects from older ones.
文摘Recent developments in computer vision applications have enabled detection of significant visual objects in video streams.Studies quoted in literature have detected objects from video streams using Spatiotemporal Particle Swarm Optimization(SPSOM)and Incremental Deep Convolution Neural Networks(IDCNN)for detecting multiple objects.However,the study considered opticalflows resulting in assessing motion contrasts.Existing methods have issue with accuracy and error rates in motion contrast detection.Hence,the overall object detection performance is reduced significantly.Thus,consideration of object motions in videos efficiently is a critical issue to be solved.To overcome the above mentioned problems,this research work proposes a method involving ensemble approaches to and detect objects efficiently from video streams.This work uses a system modeled on swarm optimization and ensemble learning called Spatiotemporal Glowworm Swarm Optimization Model(SGSOM)for detecting multiple significant objects.A steady quality in motion contrasts is maintained in this work by using Chebyshev distance matrix.The proposed system achieves global optimization in its multiple object detection by exploiting spatial/temporal cues and local constraints.Its experimental results show that the proposed system scores 4.8%in Mean Absolute Error(MAE)while achieving 86%in accuracy,81.5%in precision,85%in recall and 81.6%in F-measure and thus proving its utility in detecting multiple objects.
文摘Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images.
基金by Makkah Digital Gate Initiative under grant no.(MDP-IRI-3-2020).
文摘Desertification has become a global threat and caused a crisis,especially in Middle Eastern countries,such as Saudi Arabia.Makkah is one of the most important cities in Saudi Arabia that needs to be protected from desertification.The vegetation area in Makkah has been damaged because of desertification through wind,floods,overgrazing,and global climate change.The damage caused by desertification can be recovered provided urgent action is taken to prevent further degradation of the vegetation area.In this paper,we propose an automatic desertification detection system based on Deep Learning techniques.Aerial images are classified using Convolutional Neural Networks(CNN)to detect land state variation in real-time.CNNs have been widely used for computer vision applications,such as image classification,image segmentation,and quality enhancement.The proposed CNN model was trained and evaluated on the Arial Image Dataset(AID).Compared to state-of-the-art methods,the proposed model has better performance while being suitable for embedded implementation.It has achieved high efficiency with 96.47% accuracy.In light of the current research,we assert the appropriateness of the proposed CNN model in detecting desertification from aerial images.
基金supported by the National Science Foundation of China(60872109)the Program for New Century Excellent Talents in University(NCET-06-0900)
文摘To get the high compression ratio as well as the high-quality reconstructed image, an effective image compression scheme named irregular segmentation region coding based on spiking cortical model(ISRCS) is presented. This scheme is region-based and mainly focuses on two issues. Firstly, an appropriate segmentation algorithm is developed to partition an image into some irregular regions and tidy contours, where the crucial regions corresponding to objects are retained and a lot of tiny parts are eliminated. The irregular regions and contours are coded using different methods respectively in the next step. The other issue is the coding method of contours where an efficient and novel chain code is employed. This scheme tries to find a compromise between the quality of reconstructed images and the compression ratio. Some principles and experiments are conducted and the results show its higher performance compared with other compression technologies, in terms of higher quality of reconstructed images, higher compression ratio and less time consuming.
基金Supported by the National Natural Science Foundation of China(No.61471136)the Special Project for Global Change and Air-sea Interaction of Ministry of Natural Resources(No.GASI-02-SCS-YGST2-04)the Chinese Association of Ocean Mineral Resources R&D(No.DY135-E2-4)
文摘Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.
文摘The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.
基金supported in part by the Fundamental Research Funds for the Central Universities in China (No. 2100219066)the Key Fundamental Research Funds for the Central Universities in China (No. 0200219153)
文摘With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches.
文摘Recent patterns of human sentiments are highly influenced by emoji based sentiments(EBS).Social media users are widely using emoji based sentiments(EBS)in between text messages,tweets and posts.Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model;but due to the wide range of dissimilar,heterogynous and complex patterns of emoji with similarmeanings(SM)have become one of the significant research areas of machine vision.This paper proposes an approach to provide meticulous assistance to social media application(SMA)users to classify the EBS sentiments.Proposed methodology consists upon three layerswhere first layer deals with data cleaning and feature selection techniques to detect dissimilar emoji patterns(DEP)with similar meanings(SM).In first sub step we input set of emoji,in second sub step every emoji has to qualify user defined threshold,in third sub step algorithm detects every emoji by considering as objects and in fourth step emoji images are cropped,after data cleaning these tiny images are saved as emoji images.In second step we build classification model by using convolutional neural networks(CNN)to explore hidden knowledge of emoji datasets.In third step we present results visualization by using confusion matrix and other estimations.This paper contributes(1)data cleaning method to detect EBS;(2)highest classification accuracy for emoji classification measured as 97.63%.
文摘In order to avoid the problem of poor illumination characteristics and inaccurate positioning accuracy, this paper proposed a pedestrian detection algorithm suitable for low-light environments. The algorithm first applied the multi-scale Retinex image enhancement algorithm to the sample pre-processing of deep learning to improve the image resolution. Then the paper used the faster regional convolutional neural network to train the pedestrian detection model, extracted the pedestrian characteristics, and obtained the bounding boxes through classification and position regression. Finally, the pedestrian detection process was carried out by introducing the Soft-NMS algorithm, and the redundant bounding box was eliminated to obtain the best pedestrian detection position. The experimental results showed that the proposed detection algorithm achieves an average accuracy of 89.74% on the low-light dataset, and the pedestrian detection effect was more significant.
基金The authors are thankful to the Deanship of Scientific Research,King Saud University,Riyadh,Saudi Arabia for funding this work through the Research Group No.RGP-1439-067.
文摘The gender recognition problem has attracted the attention of the computer vision community due to its importance in many applications(e.g.,sur-veillance and human–computer interaction[HCI]).Images of varying levels of illumination,occlusion,and other factors are captured in uncontrolled environ-ments.Iris and facial recognition technology cannot be used on these images because iris texture is unclear in these instances,and faces may be covered by a scarf,hijab,or mask due to the COVID-19 pandemic.The periocular region is a reliable source of information because it features rich discriminative biometric features.However,most existing gender classification approaches have been designed based on hand-engineered features or validated in controlled environ-ments.Motivated by the superior performance of deep learning,we proposed a new method,PeriGender,inspired by the design principles of the ResNet and DenseNet models,that can classify gender using features from the periocular region.The proposed system utilizes a dense concept in a residual model.Through skip connections,it reuses features on different scales to strengthen dis-criminative features.Evaluations of the proposed system on challenging datasets indicated that it outperformed state-of-the-art methods.It achieved 87.37%,94.90%,94.14%,99.14%,and 95.17%accuracy on the GROUPS,UFPR-Periocular,Ethnic-Ocular,IMP,and UBIPr datasets,respectively,in the open-world(OW)protocol.It further achieved 97.57%and 93.20%accuracy for adult periocular images from the GROUPS dataset in the closed-world(CW)and OW protocols,respectively.The results showed that the middle region between the eyes plays a crucial role in the recognition of masculine features,and feminine features can be identified through the eyebrow,upper eyelids,and corners of the eyes.Furthermore,using a whole region without cropping enhances PeriGender’s learning capability,improving its understanding of both eyes’global structure without discontinuity.