The Funan-Huoqiu area is located in the border tectonic belt between the North China and South China active block regions. By means of seismological and geological surveys and synthetic analysis, evidences of tectonic...The Funan-Huoqiu area is located in the border tectonic belt between the North China and South China active block regions. By means of seismological and geological surveys and synthetic analysis, evidences of tectonic deformation in lower intensity have been found in the area since Late Pleistocene, where small earthquakes are distributed linearly along the main faults, conjugate shear joints are developed in the Upper Pleistocene nearby the faults. In the south of the studied region, fissures with different lengths, widths and directions occurred successively in Gushi, Huoqiu, Funan and other places of the area, in the 1970’s, and the direction of the fissures is approximately consistent with that of the Feizhong fault and Wanglaorenji fault. The authors hold that the clustering of small earthquakes, the conjugate shear joints developed in the Upper Pleistocene, the crumpled deformation of materials on fault plane, and the development of modern surface fissures in the area all reflect that the energy in the crust was slowly released, and that the weak deformation took place in corresponding faults. There was only one destructive earthquake taking place in the area (the Jiangkouji {M_S43/4} earthquake). Altogather, there has been weak activity in the area since the Late Quaternary, and it is mainly shown as a creep-slip.展开更多
Based on the earthquake activity characteristics of the diamond block in the Sichuan- Yunnan region and by using the method of the meso-scope damage dynamics and damage evolution, we studied the damage evolution proce...Based on the earthquake activity characteristics of the diamond block in the Sichuan- Yunnan region and by using the method of the meso-scope damage dynamics and damage evolution, we studied the damage evolution process for moderately strong earthquakes along two seismic belts. The original combination patterns of all the units which illuminate the changes from stable state to destroyed state are given. All these patterns can direct the earthquake prediction practice in this region.展开更多
文摘The Funan-Huoqiu area is located in the border tectonic belt between the North China and South China active block regions. By means of seismological and geological surveys and synthetic analysis, evidences of tectonic deformation in lower intensity have been found in the area since Late Pleistocene, where small earthquakes are distributed linearly along the main faults, conjugate shear joints are developed in the Upper Pleistocene nearby the faults. In the south of the studied region, fissures with different lengths, widths and directions occurred successively in Gushi, Huoqiu, Funan and other places of the area, in the 1970’s, and the direction of the fissures is approximately consistent with that of the Feizhong fault and Wanglaorenji fault. The authors hold that the clustering of small earthquakes, the conjugate shear joints developed in the Upper Pleistocene, the crumpled deformation of materials on fault plane, and the development of modern surface fissures in the area all reflect that the energy in the crust was slowly released, and that the weak deformation took place in corresponding faults. There was only one destructive earthquake taking place in the area (the Jiangkouji {M_S43/4} earthquake). Altogather, there has been weak activity in the area since the Late Quaternary, and it is mainly shown as a creep-slip.
文摘Based on the earthquake activity characteristics of the diamond block in the Sichuan- Yunnan region and by using the method of the meso-scope damage dynamics and damage evolution, we studied the damage evolution process for moderately strong earthquakes along two seismic belts. The original combination patterns of all the units which illuminate the changes from stable state to destroyed state are given. All these patterns can direct the earthquake prediction practice in this region.