Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study ...Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study the crustal structure beneath the North China Craton (NCC). The results suggest that modified and preserved crust coexist beneath the craton with generally Airy-type isostatic equilibrium. The equilibrium is relatively low in the eastern NCC and some local areas in the central and western NCC, which correlates well with regional geology and tectonic features. Major differences in the crust were observed beneath the eastern, central, and western NCC, with average Moho depths of 33, 37, and 42 km and average Poisson's ratios of 0.268, 0.267 and 0.264, respectively. Abnormal Moho depths and Poisson's ratios are mainly present in the rift zones, the northern and southern edges of the central NCC, and tectonic boundaries. The crust beneath Ordos retains the characteristics of typical craton. Poisson's ratio increases roughly linearly as Moho depth decreases in all three parts of the NCC with different slopes. Receiver function amplitudes are relatively large in the northern edge of the eastern and central NCC, and small in and near the rifts. The Yanshan Mountains and southern part of the Shanxi rift show small-scale variations in the receiver-function ampli- tudes. These observations suggest that overall modification and thinning in the crust occurred in the eastern NCC, and local crustal modification occurred in the central and westem NCC. Different crustal structures in the eastern, central, and western NCC suggest different modification processes and mechanisms. The overall destruction of the crustal structure in the eastern NCC is probably due to the westward subduction of the Pacific Plate during the Meso-Cenozoic time; the local modifications of the crust in the central and western NCC may be due to repeated reactivations at zones with a heterogeneous structure by successive thermal-tectonic events during the long-term evolution of the NCC.展开更多
This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity i...This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB733203)the National Natural Science Foundation of China(Grant Nos.41225016+1 种基金41125015)the National Science and Technology Major of China(Grant No.2011ZX05008-001)
文摘Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study the crustal structure beneath the North China Craton (NCC). The results suggest that modified and preserved crust coexist beneath the craton with generally Airy-type isostatic equilibrium. The equilibrium is relatively low in the eastern NCC and some local areas in the central and western NCC, which correlates well with regional geology and tectonic features. Major differences in the crust were observed beneath the eastern, central, and western NCC, with average Moho depths of 33, 37, and 42 km and average Poisson's ratios of 0.268, 0.267 and 0.264, respectively. Abnormal Moho depths and Poisson's ratios are mainly present in the rift zones, the northern and southern edges of the central NCC, and tectonic boundaries. The crust beneath Ordos retains the characteristics of typical craton. Poisson's ratio increases roughly linearly as Moho depth decreases in all three parts of the NCC with different slopes. Receiver function amplitudes are relatively large in the northern edge of the eastern and central NCC, and small in and near the rifts. The Yanshan Mountains and southern part of the Shanxi rift show small-scale variations in the receiver-function ampli- tudes. These observations suggest that overall modification and thinning in the crust occurred in the eastern NCC, and local crustal modification occurred in the central and westem NCC. Different crustal structures in the eastern, central, and western NCC suggest different modification processes and mechanisms. The overall destruction of the crustal structure in the eastern NCC is probably due to the westward subduction of the Pacific Plate during the Meso-Cenozoic time; the local modifications of the crust in the central and western NCC may be due to repeated reactivations at zones with a heterogeneous structure by successive thermal-tectonic events during the long-term evolution of the NCC.
文摘This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.