Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ...CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.展开更多
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s...Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.展开更多
Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surr...Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.展开更多
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr...Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
目的 分析甲状腺乳头状癌(PTC)超声图像表现在预测颈部Ⅵ区淋巴结转移(lymph node metastasis in the cervicalregion Ⅵ,CLNM-Ⅵ)危险度的临床价值。方法 选取2022年4月~2023年6月在河北省沧州中西医结合医院接受手术治疗并经病理证实...目的 分析甲状腺乳头状癌(PTC)超声图像表现在预测颈部Ⅵ区淋巴结转移(lymph node metastasis in the cervicalregion Ⅵ,CLNM-Ⅵ)危险度的临床价值。方法 选取2022年4月~2023年6月在河北省沧州中西医结合医院接受手术治疗并经病理证实的350例PTC患者,根据术后病理结果,将患者分为CLNM-Ⅵ组和非CLNM-Ⅵ组。收集并对比两组术前超声图像表现及临床病理特征,应用Logistic回归分析PTC患者CLNM-Ⅵ危险因素,受试者工作特征(ROC)曲线分析PTC超声图像表现对CLNM-Ⅵ的预测价值。结果 单因素分析显示,CLNM-Ⅵ组男性、实性或囊实性、年龄≤45岁、低回声、甲状腺背景正常、点状强回声的构成比均大于非CLNM-Ⅵ组(P均<0.05)。Logistic回归分析显示,男性、实性或囊实性、年龄≤45岁、低回声、甲状腺背景正常、病灶内可见点状强回声是CLNM-Ⅵ的独立危险因素(P均<0.05);进一步经ROC曲线分析显示,以上预测CLNM-Ⅵ的AUC分别为0.565、0.580、0.529、0.585、0.582、0.582,联合预测AUC为0.708。结论PTC超声图像表现在CLNM-Ⅵ风险评估中具有重要意义,可为PTC的预后判断提供一定的参考依据。展开更多
Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheime...Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis.展开更多
The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird su...The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research.展开更多
Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emira...Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.展开更多
Numerous new records of Ferganiella, Podozamites, and Schidolepium, including a new species, Ferganiella ivantsovii sp. nov., are described from the Early Jurassic(Toarcian) Middle Subformation of the Prisayan Formati...Numerous new records of Ferganiella, Podozamites, and Schidolepium, including a new species, Ferganiella ivantsovii sp. nov., are described from the Early Jurassic(Toarcian) Middle Subformation of the Prisayan Formation from the Euro-Sinian paleofloristic region in the Irkutsk Basin, Eastern Siberia, Russia. An analysis of the paleogeographic distribution of Ferganiella and Podozamites shows that both genera were the most diverse and numerous in the East Asian province of the Euro-Sinian region and in the Northern Chinese province of the Siberian region during the Early and Middle Jurassic. These phytochoria were located in the subtropical and temperate subtropical climate zones, which allows us to consider Ferganiella and Podozamites as thermophilic plants, which are important indicators of the Early Toarcian climatic optimum. Their abundance in the Irkutsk Basin thus may indicate Early Toarcian warming;further abundant Schidolepium cones, which produced Araucariacites pollen, typical for Euro-Sinian flora complement the scenario. Thus, the new finds are the first macrofloristic indicators of the Toarcian climatic optimum in the Irkutsk Basin.展开更多
Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC...Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.展开更多
Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigat...Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.展开更多
Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical re...Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.展开更多
Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.Ho...Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.展开更多
El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement...El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.展开更多
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an...The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.展开更多
This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f...This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.展开更多
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金supported by the General Project of Top-Design of Multi-Scale Nature-Social ModelsData Support and Decision Support System for NSFC Carbon Neutrality Major Project(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.
基金financially supported by the National Natural Science Foundation of China(31972149)funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnologythe Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA2006040102]the National Natural Science Foundation of China[grant number 42175037].
文摘Extreme snowfall events over the Tibetan Plateau(TP)cause considerable damage to local society and natural ecosystems.In this study,the authors investigate the projected changes in such events over the TP and its surrounding areas based on an ensemble of a set of 21st century climate change projections using a regional climate model,RegCM4.The model is driven by five CMIP5 global climate models at a grid spacing of 25 km,under the RCP4.5 and RCP8.5 pathways.Four modified ETCCDI extreme indices-namely,SNOWTOT,S1mm,S10mm,and Sx5day-are employed to characterize the extreme snowfall events.RegCM4 generally reproduces the spatial distribution of the indices over the region,although with a tendency of overestimation.For the projected changes,a general decrease in SNOWTOT is found over most of the TP,with greater magnitude and better cross-simulation agreement over the eastern part.All the simulations project an overall decrease in S1mm,ranging from a 25%decrease in the west and to a 50%decrease in the east of the TP.Both S10mm and Sx5day are projected to decrease over the eastern part and increase over the central and western parts of the TP.Notably,S10mm shows a marked increase(more than double)with high cross-simulation agreement over the central TP.Significant increases in all four indices are found over the Tarim and Qaidam basins,and northwestern China north of the TP.The projected changes show topographic dependence over the TP in the latitudinal direction,and tend to decrease/increase in low-/high-altitude areas.
基金jointly funded by the State Key Program of the National Natural Science Foundation of China(No.42130605)the Major Program of the National Natural Science Foundation of China(No.72293604)+5 种基金the Youth Innovative Talents Program of Guangdong Colleges and Universities(No.2022KQNCX026)the Natural Science Foundation of Shandong(No.ZR2022MD038)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.230419106)the State Key Program of the National Natural Science Foundation of China(No.42130605)the National Natural Science Foundation of China(Nos.42275001,42276019,42205014,and 42275017)the Guangdong Ocean University Ph.D.Scientific Research Program(No.R19045).
文摘Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
文摘目的 分析甲状腺乳头状癌(PTC)超声图像表现在预测颈部Ⅵ区淋巴结转移(lymph node metastasis in the cervicalregion Ⅵ,CLNM-Ⅵ)危险度的临床价值。方法 选取2022年4月~2023年6月在河北省沧州中西医结合医院接受手术治疗并经病理证实的350例PTC患者,根据术后病理结果,将患者分为CLNM-Ⅵ组和非CLNM-Ⅵ组。收集并对比两组术前超声图像表现及临床病理特征,应用Logistic回归分析PTC患者CLNM-Ⅵ危险因素,受试者工作特征(ROC)曲线分析PTC超声图像表现对CLNM-Ⅵ的预测价值。结果 单因素分析显示,CLNM-Ⅵ组男性、实性或囊实性、年龄≤45岁、低回声、甲状腺背景正常、点状强回声的构成比均大于非CLNM-Ⅵ组(P均<0.05)。Logistic回归分析显示,男性、实性或囊实性、年龄≤45岁、低回声、甲状腺背景正常、病灶内可见点状强回声是CLNM-Ⅵ的独立危险因素(P均<0.05);进一步经ROC曲线分析显示,以上预测CLNM-Ⅵ的AUC分别为0.565、0.580、0.529、0.585、0.582、0.582,联合预测AUC为0.708。结论PTC超声图像表现在CLNM-Ⅵ风险评估中具有重要意义,可为PTC的预后判断提供一定的参考依据。
基金supported by the National Natural Science Foundation of China,Nos.82171194 and 81974155(both to JL)the Shanghai Municipal Science and Technology Commission Medical Guide Project,No.16411969200(to WZ)Shanghai Municipal Science and Technology Commission Biomedical Science and Technology Project,No.22S31902600(to JL)。
文摘Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis.
基金supported by the National Key R&D Program of China(2022YFC2602500,2022YFC2602502)Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China,Second Xizang Plateau Scientific Expedition and Research Program(STEP,2019QZKK0501)+3 种基金Major Science and Technique Programs in Yunnan Province(202102AA310055)National Natural Science Foundation of China(32070435)Science and Technology Basic Resources Investigation Program of China“Wild germplasm collection and preservation in Great Gaoligong Mountain”(2021FY100200)Project for Talent and Platform of Science and Technology in Yunnan Province Science and Technology Department(202205AM070007)。
文摘The Gaoligong Mountains(GLGM),located in southwestern China,extend north to south along the western border of the Hengduan Mountains,spanning approximately 600 km.In this study,we consolidated findings from 17 bird surveys conducted in the GLGM between 2010 and 2022.We found that the GLGM harbors tremendous bird diversity,with a total of 796 documented bird species in the region.Nearly a quarter(23.0%)of these species are listed as state key protected species or as Chinese and global threatened species.Analysis of species richness at the county level showed a decreasing trend with increasing latitude,with the greatest diversity in Yingjiang(661 species).Observations indicated that the GLGM belongs to the Oriental realm,primarily composed of bird species from southern and southwestern China.The GLGM plays an important role in avian conservation by sheltering exceptional bird diversity,providing corridors and flyways for bird migration and dispersal,and mitigating the effects of climate change.In response to the conservation needs of birds and other wildlife,the Chinese government has established numerous protected areas within the GLGM.Despite these efforts,avian conservation still faces considerable challenges in the GLGM due to limitations in the protected area network,transboundary nature of the regions,and existing gaps in monitoring and research.
文摘Savanna, semi-deserts, and hot deserts characterize the Saharo-Arabian region, which includes Morocco, Mauretania, Algeria, Tunisia, Libya, Egypt, Palestine, Kuwait, Saudi Arabia, Qatar, Bahrain, the United Arab Emirates, Oman, Yemen, southern Jordan, Syria, Iraq, Iran, Afghanistan, Pakistan, and northern India. Its neighboring regions, the Sudano-Zambezian region belonging to the Paleotropical Kingdom and the Mediterranean and Irano-Turanian regions included in the Holarctic Kingdom, share a large portion of their flora with the Saharo-Arabian region. Despite the widespread acknowledgment of the region's global importance for plant diversity, an up to date list of the Saharo-Arabian endemics is still unavailable. The available data are frequently insufficient or out of date at both the whole global and the national scales. Therefore, the present study aims at screening and verifying the Saharo-Arabian endemic plants and determining the phytogeographical distribution of these taxa in the Egyptian flora. Hence, a preliminary list of 429 Saharo-Arabian endemic plants in Egypt was compiled from the available literature. Indeed, by excluding the species that were recorded in any countries or regions outside the Saharo-Arabian region based on different literature, database reviews, and websites, the present study has reduced this number to 126 taxa belonging to 87 genera and 37 families. Regarding the national geographic distribution, South Sinai is the richest region with 83 endemic species compared with other eight phytogeographic regions in Egypt, followed by the Isthmic Desert(the middle of Sinai Peninsula, 53 taxa). Sahara regional subzone(SS1) distributes all the 126 endemic species, Arabian regional subzone(SS2) owns 79 taxa, and Nubo-Sindian subzone(SS3) distributes only 14 endemics. Seven groups were recognized at the fourth level of classification as a result of the application of the two-way indicator species analysis(TWINSPAN) to the Saharo-Arabian endemic species in Egypt, i.e., Ⅰ Asphodelus refractus group, Ⅱ Agathophora alopecuroides var. papillosa group, Ⅲ Anvillea garcinii group, Ⅳ Reseda muricata group, V Agathophora alopecuroides var. alopecuroides group, Ⅵ Scrophularia deserti group, and Ⅶ Astragalus schimperi group. It's crucial to clearly define the Saharo-Arabian endemics and illustrate an updated verified database of these taxa for a given territory for providing future management plans that support the conservation and sustainable use of these valuable species under current thought-provoking devastating impacts of rapid anthropogenic and climate change in this region.
文摘Numerous new records of Ferganiella, Podozamites, and Schidolepium, including a new species, Ferganiella ivantsovii sp. nov., are described from the Early Jurassic(Toarcian) Middle Subformation of the Prisayan Formation from the Euro-Sinian paleofloristic region in the Irkutsk Basin, Eastern Siberia, Russia. An analysis of the paleogeographic distribution of Ferganiella and Podozamites shows that both genera were the most diverse and numerous in the East Asian province of the Euro-Sinian region and in the Northern Chinese province of the Siberian region during the Early and Middle Jurassic. These phytochoria were located in the subtropical and temperate subtropical climate zones, which allows us to consider Ferganiella and Podozamites as thermophilic plants, which are important indicators of the Early Toarcian climatic optimum. Their abundance in the Irkutsk Basin thus may indicate Early Toarcian warming;further abundant Schidolepium cones, which produced Araucariacites pollen, typical for Euro-Sinian flora complement the scenario. Thus, the new finds are the first macrofloristic indicators of the Toarcian climatic optimum in the Irkutsk Basin.
基金supported by the National Natural Science Foundation of China(31925029,31471457)the National Key Research and Development Project of China(2021YFD120010105)Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)。
文摘Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.
基金partially supported by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Grant (Project No.OHO01304)。
文摘Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
文摘Much of the world's biodiversity lies in heterogeneous mountain areas with their diverse environments.As an example,Iranian montane ranges are highly diverse,particularly in the Irano-Turanian phytogeographical region.Understanding plant diversity patterns with increasing elevation is of high significance,not least for conservation planning.We studied the pattern of species richness,Shannon diversity,endemic richness,endemics ratio,and richness of life forms along a 3900 m elevational transect in Mount Palvar,overlooking the Lut Desert in Southeast Iran.We also analyzed the effect of environmental variables on species turnover along the vertical gradient.A total of 120 vegetation plots(10 m×10 m)were sampled along the elevational transect containing species and environmental data.To discover plant diversity pattern along the elevational gradient,generalized additive model(GAM)was used.Non-metric multidimensional scaling(NMDS)was applied for illustrating the correlation between species composition and environmental variables.We found hump-shaped pattern for species richness,Shannon diversity,endemic richness,and species richness of different life forms,but a monotonic increasing pattern for ratio of endemic species from low to high elevations.Our study confirms the humped pattern of species richness peaking at intermediate elevations along a complete elevational gradient in a semi-arid mountain.The monotonic increase of endemics ratio with elevation in our area as a case study is consistent with global increase of endemism with elevation.According to our results,temperature and precipitation are two important climatic variables that drive elevational plant diversity,particularly in seasonally dry areas.Our study suggests that effective conservation and management are needed for this low latitude mountain area along with calling for long-term monitoring for species redistribution.
基金funded by the National Natural Science Foundation of China(U20A2098,41701219)the National Key Research and Development Program of China(2019YFC0507801)。
文摘Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0605703)the National Natural Science Foundation of China(Grant Nos.42176243,41976193 and 41676190)supported by National Natural Science Foundation of China(Grant No.41975079)。
文摘El Nino-Southern Oscillation(ENSO),the leading mode of global interannual variability,usually intensifies the Hadley Circulation(HC),and meanwhile constrains its meridional extension,leading to an equatorward movement of the jet system.Previous studies have investigated the response of HC to ENSO events using different reanalysis datasets and evaluated their capability in capturing the main features of ENSO-associated HC anomalies.However,these studies mainly focused on the global HC,represented by a zonal-mean mass stream function(MSF).Comparatively fewer studies have evaluated HC responses from a regional perspective,partly due to the prerequisite of the Stokes MSF,which prevents us from integrating a regional HC.In this study,we adopt a recently developed technique to construct the three-dimensional structure of HC and evaluate the capability of eight state-of-the-art reanalyses in reproducing the regional HC response to ENSO events.Results show that all eight reanalyses reproduce the spatial structure of HC responses well,with an intensified HC around the central-eastern Pacific but weakened circulations around the Indo-Pacific warm pool and tropical Atlantic.The spatial correlation coefficient of the three-dimensional HC anomalies among the different datasets is always larger than 0.93.However,these datasets may not capture the amplitudes of the HC responses well.This uncertainty is especially large for ENSO-associated equatorially asymmetric HC anomalies,with the maximum amplitude in Climate Forecast System Reanalysis(CFSR)being about 2.7 times the minimum value in the Twentieth Century Reanalysis(20CR).One should be careful when using reanalysis data to evaluate the intensity of ENSO-associated HC anomalies.
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.
基金supported by the National Natural Sciences Foundation of China (Grant Nos. 42075073 and 42075077)。
文摘This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes.