In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale c...BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.展开更多
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the tru...Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.展开更多
BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression an...BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.展开更多
Internet of Things(IoT)is a popular social network in which devices are virtually connected for communicating and sharing information.This is applied greatly in business enterprises and government sectors for deliveri...Internet of Things(IoT)is a popular social network in which devices are virtually connected for communicating and sharing information.This is applied greatly in business enterprises and government sectors for delivering the services to their customers,clients and citizens.But,the interaction is success-ful only based on the trust that each device has on another.Thus trust is very much essential for a social network.As Internet of Things have access over sen-sitive information,it urges to many threats that lead data management to risk.This issue is addressed by trust management that help to take decision about trust-worthiness of requestor and provider before communication and sharing.Several trust-based systems are existing for different domain using Dynamic weight meth-od,Fuzzy classification,Bayes inference and very few Regression analysis for IoT.The proposed algorithm is based on Logistic Regression,which provide strong statistical background to trust prediction.To make our stand strong on regression support to trust,we have compared the performance with equivalent sound Bayes analysis using Beta distribution.The performance is studied in simu-lated IoT setup with Quality of Service(QoS)and Social parameters for the nodes.The proposed model performs better in terms of various metrics.An IoT connects heterogeneous devices such as tags and sensor devices for sharing of information and avail different application services.The most salient features of IoT system is to design it with scalability,extendibility,compatibility and resiliency against attack.The existing worksfinds a way to integrate direct and indirect trust to con-verge quickly and estimate the bias due to attacks in addition to the above features.展开更多
Objective:To investigate the trend of mortality by COVID-19 before and after the national vaccination program using joinpoint regression analysis from 19 February 2020 to 5 September 2022.Methods:In the present study,...Objective:To investigate the trend of mortality by COVID-19 before and after the national vaccination program using joinpoint regression analysis from 19 February 2020 to 5 September 2022.Methods:In the present study,a joinpoint regression analysis of monthly collected data on confirmed deaths of COVID-19 in Iran from February 19,2020 to September 5,2022 was performed.Results:After national vaccination in Iran,the trend of new monthly deaths due to COVID-19 was decreasing.The percentage of monthly changes from the beginning of the pandemic to the 19th month was 6.62%(95%CI:1.1,12.4),which had an increasing trend.From the 19th month to the end of the 31st month,the mortality trend was decreasing,and the percentage of monthly changes was-20.05%(95%CI:-8.3,-30.3)(P=0.002).The average percentage of monthly changes was-5%with a 95%CI of(-10.5,0.9).Conclusions:Along with other health measures,such as quarantine,wearing a mask,hand washing,social distancing,etc.,national vaccination significantly reduces the mortality rate of COVID-19.展开更多
Little research can be found in relation to the stability of anisotropic and heterogenous soils in three dimensions.In this paper,we propose a study on the three-dimensional(3D)undrained slopes in anisotropic and hete...Little research can be found in relation to the stability of anisotropic and heterogenous soils in three dimensions.In this paper,we propose a study on the three-dimensional(3D)undrained slopes in anisotropic and heterogenous clay using advanced upper and lower bounds finite element limit analysis(FELA).The obtained stability solutions are normalized,and presented by a stability number that is a function of three geometrical ratios and two material ratios,i.e.depth ratio,length ratio,slope angle,shear strength gradient ratio and anisotropic strength ratio.Numerical results are compared with experimental data in the literature,and charts are presented to cover a wide range of design parameters.Using the multivariate adaptive regression splines(MARS)analysis,the respective influence and sensitivity of each design parameter on the stability number and the failure mechanism are investigated.An empirical equation is also developed to effectively estimate the stability number.展开更多
The use of Amazon Web Services is growing rapidly as more users are adopting the technology.It has various functionalities that can be used by large corporates and individuals as well.Sentiment analysis is used to bui...The use of Amazon Web Services is growing rapidly as more users are adopting the technology.It has various functionalities that can be used by large corporates and individuals as well.Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions.In this research work,sentiment analysis is performed on the AWS Elastic Compute Cloud(EC2)through Twitter data.The data is managed to the EC2 by using elastic load balancing.The collected data is subjected to preprocessing approaches to clean the data,and then machine learning-based logistic regression is employed to categorize the sentiments into positive and negative sentiments.High accuracy of 94.17%is obtained through the proposed machine learning model which is higher than the other models that are developed using the existing algorithms.展开更多
Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for rep...Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Machine Learning(ML)has changed clinical diagnostic procedures drastically.Especially in Cardiovascular Diseases(CVD),the use of ML is indispensable to reducing human errors.Enormous studies focused on disease predict...Machine Learning(ML)has changed clinical diagnostic procedures drastically.Especially in Cardiovascular Diseases(CVD),the use of ML is indispensable to reducing human errors.Enormous studies focused on disease prediction but depending on multiple parameters,further investigations are required to upgrade the clinical procedures.Multi-layered implementation of ML also called Deep Learning(DL)has unfolded new horizons in the field of clinical diagnostics.DL formulates reliable accuracy with big datasets but the reverse is the case with small datasets.This paper proposed a novel method that deals with the issue of less data dimensionality.Inspired by the regression analysis,the proposed method classifies the data by going through three different stages.In the first stage,feature representation is converted into probabilities using multiple regression techniques,the second stage grasps the probability conclusions from the previous stage and the third stage fabricates the final classifications.Extensive experiments were carried out on the Cleveland heart disease dataset.The results show significant improvement in classification accuracy.It is evident from the comparative results of the paper that the prevailing statistical ML methods are no more stagnant disease prediction techniques in demand in the future.展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg...Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one han...BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value.展开更多
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the...Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.展开更多
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality ...BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.展开更多
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
文摘BACKGROUND The spread of the severe acute respiratory syndrome coronavirus 2 outbreak worldwide has caused concern regarding the mortality rate caused by the infection.The determinants of mortality on a global scale cannot be fully understood due to lack of information.AIM To identify key factors that may explain the variability in case lethality across countries.METHODS We identified 21 Potential risk factors for coronavirus disease 2019(COVID-19)case fatality rate for all the countries with available data.We examined univariate relationships of each variable with case fatality rate(CFR),and all independent variables to identify candidate variables for our final multiple model.Multiple regression analysis technique was used to assess the strength of relationship.RESULTS The mean of COVID-19 mortality was 1.52±1.72%.There was a statistically significant inverse correlation between health expenditure,and number of computed tomography scanners per 1 million with CFR,and significant direct correlation was found between literacy,and air pollution with CFR.This final model can predict approximately 97%of the changes in CFR.CONCLUSION The current study recommends some new predictors explaining affect mortality rate.Thus,it could help decision-makers develop health policies to fight COVID-19.
基金Supported by the Indigenous Innovation’s Capability Development Program of Huizhou University(HZU202003,HZU202020)Natural Science Foundation of Guangdong Province(2022A1515011463)+2 种基金the Project of Educational Commission of Guangdong Province(2023ZDZX1025)National Natural Science Foundation of China(12271473)Guangdong Province’s 2023 Education Science Planning Project(Higher Education Special Project)(2023GXJK505)。
文摘Complementary-label learning(CLL)aims at finding a classifier via samples with complementary labels.Such data is considered to contain less information than ordinary-label samples.The transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this problem.In this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most cases.As an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.
文摘BACKGROUND Radiation pneumonitis(RP)is a severe complication of thoracic radiotherapy that may lead to dyspnea and lung fibrosis,and negatively affects patients’quality of life.AIM To carry out multiple regression analysis on the influencing factors of radiation pneumonitis.METHODS Records of 234 patients receiving chest radiotherapy in Huzhou Central Hospital(Huzhou,Zhejiang Province,China)from January 2018 to February 2021,and the patients were divided into either a study group or a control group based on the presence of radiation pneumonitis or not.Among them,93 patients with radiation pneumonitis were included in the study group and 141 without radiation pneumonitis were included in the control group.General characteristics,and radiation and imaging examination data of the two groups were collected and compared.Due to the statistical significance observed,multiple regression analysis was performed on age,tumor type,chemotherapy history,forced vital capacity(FVC),forced expiratory volume in the first second(FEV1),carbon monoxide diffusion volume(DLCO),FEV1/FVC ratio,planned target area(PTV),mean lung dose(MLD),total number of radiation fields,percentage of lung tissue in total lung volume(vdose),probability of normal tissue complications(NTCP),and other factors.RESULTS The proportions of patients aged≥60 years and those with the diagnosis of lung cancer and a history of chemotherapy in the study group were higher than those in the control group(P<0.05);FEV1,DLCO,and FEV1/FVC ratio in the study group were lower than those in the control group(P<0.05),while PTV,MLD,total field number,vdose,and NTCP were higher than in the control group(P<0.05).Logistic regression analysis showed that age,lung cancer diagnosis,chemotherapy history,FEV1,FEV1/FVC ratio,PTV,MLD,total number of radiation fields,vdose,and NTCP were risk factors for radiation pneumonitis.CONCLUSION We have identified patient age,type of lung cancer,history of chemotherapy,lung function,and radiotherapy parameters as risk factors for radiation pneumonitis.Comprehensive evaluation and examination should be carried out before radiotherapy to effectively prevent radiation pneumonitis.
文摘Internet of Things(IoT)is a popular social network in which devices are virtually connected for communicating and sharing information.This is applied greatly in business enterprises and government sectors for delivering the services to their customers,clients and citizens.But,the interaction is success-ful only based on the trust that each device has on another.Thus trust is very much essential for a social network.As Internet of Things have access over sen-sitive information,it urges to many threats that lead data management to risk.This issue is addressed by trust management that help to take decision about trust-worthiness of requestor and provider before communication and sharing.Several trust-based systems are existing for different domain using Dynamic weight meth-od,Fuzzy classification,Bayes inference and very few Regression analysis for IoT.The proposed algorithm is based on Logistic Regression,which provide strong statistical background to trust prediction.To make our stand strong on regression support to trust,we have compared the performance with equivalent sound Bayes analysis using Beta distribution.The performance is studied in simu-lated IoT setup with Quality of Service(QoS)and Social parameters for the nodes.The proposed model performs better in terms of various metrics.An IoT connects heterogeneous devices such as tags and sensor devices for sharing of information and avail different application services.The most salient features of IoT system is to design it with scalability,extendibility,compatibility and resiliency against attack.The existing worksfinds a way to integrate direct and indirect trust to con-verge quickly and estimate the bias due to attacks in addition to the above features.
文摘Objective:To investigate the trend of mortality by COVID-19 before and after the national vaccination program using joinpoint regression analysis from 19 February 2020 to 5 September 2022.Methods:In the present study,a joinpoint regression analysis of monthly collected data on confirmed deaths of COVID-19 in Iran from February 19,2020 to September 5,2022 was performed.Results:After national vaccination in Iran,the trend of new monthly deaths due to COVID-19 was decreasing.The percentage of monthly changes from the beginning of the pandemic to the 19th month was 6.62%(95%CI:1.1,12.4),which had an increasing trend.From the 19th month to the end of the 31st month,the mortality trend was decreasing,and the percentage of monthly changes was-20.05%(95%CI:-8.3,-30.3)(P=0.002).The average percentage of monthly changes was-5%with a 95%CI of(-10.5,0.9).Conclusions:Along with other health measures,such as quarantine,wearing a mask,hand washing,social distancing,etc.,national vaccination significantly reduces the mortality rate of COVID-19.
文摘Little research can be found in relation to the stability of anisotropic and heterogenous soils in three dimensions.In this paper,we propose a study on the three-dimensional(3D)undrained slopes in anisotropic and heterogenous clay using advanced upper and lower bounds finite element limit analysis(FELA).The obtained stability solutions are normalized,and presented by a stability number that is a function of three geometrical ratios and two material ratios,i.e.depth ratio,length ratio,slope angle,shear strength gradient ratio and anisotropic strength ratio.Numerical results are compared with experimental data in the literature,and charts are presented to cover a wide range of design parameters.Using the multivariate adaptive regression splines(MARS)analysis,the respective influence and sensitivity of each design parameter on the stability number and the failure mechanism are investigated.An empirical equation is also developed to effectively estimate the stability number.
基金This research project was supported by the Deanship of Scientific Research,Prince Sattam Bin Abdulaziz University,KSA,Project Grant No.2021/01/17783,Sha M,www.psau.edu.sa.
文摘The use of Amazon Web Services is growing rapidly as more users are adopting the technology.It has various functionalities that can be used by large corporates and individuals as well.Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions.In this research work,sentiment analysis is performed on the AWS Elastic Compute Cloud(EC2)through Twitter data.The data is managed to the EC2 by using elastic load balancing.The collected data is subjected to preprocessing approaches to clean the data,and then machine learning-based logistic regression is employed to categorize the sentiments into positive and negative sentiments.High accuracy of 94.17%is obtained through the proposed machine learning model which is higher than the other models that are developed using the existing algorithms.
文摘Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Machine Learning(ML)has changed clinical diagnostic procedures drastically.Especially in Cardiovascular Diseases(CVD),the use of ML is indispensable to reducing human errors.Enormous studies focused on disease prediction but depending on multiple parameters,further investigations are required to upgrade the clinical procedures.Multi-layered implementation of ML also called Deep Learning(DL)has unfolded new horizons in the field of clinical diagnostics.DL formulates reliable accuracy with big datasets but the reverse is the case with small datasets.This paper proposed a novel method that deals with the issue of less data dimensionality.Inspired by the regression analysis,the proposed method classifies the data by going through three different stages.In the first stage,feature representation is converted into probabilities using multiple regression techniques,the second stage grasps the probability conclusions from the previous stage and the third stage fabricates the final classifications.Extensive experiments were carried out on the Cleveland heart disease dataset.The results show significant improvement in classification accuracy.It is evident from the comparative results of the paper that the prevailing statistical ML methods are no more stagnant disease prediction techniques in demand in the future.
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
文摘Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
文摘BYD is one of the largest new energy vehicle companies in China.Analyzing its scenario and the factors that affect its value helps to understand and identify development opportunities and potential problems.On one hand,this paper makes a qualitative analysis of BYD,using SWOT model to study the internal capability and external environment of BYD.On the other hand,the multiple regression model is used for quantitative analysis of BYD’s enterprise value,and the model is established based on three factors:enterprise fundamentals,investor behavior and psychology,and macroeconomic policy uncertainty,and the stepwise regression is carried out.The results show that the increase of institutional investors’shareholding ratio,the increase of investor sentiment index,and the increase of M2 growth rate will increase the overall enterprise value,while the increase of economic policy uncertainty will decrease the enterprise value.
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金the National Natural Science Foundation of China(No.31802297)。
文摘Spatial heterogeneity or“patchiness”of plankton distributions in the ocean has always been an attractive and challenging scientific issue to oceanographers.We focused on the accumulation and dynamic mechanism of the Acetes chinensis in the Lianyungang nearshore licensed fishing area.The Lagrangian frame approaches including the Lagrangian coherent structures theory,Lagrangian residual current,and Lagrangian particle-tracking model were applied to find the transport pathways and aggregation characteristics of Acetes chinensis.There exist some material transport pathways for Acetes chinensis passing through the licensed fishing area,and Acetes chinensis is easy to accumulate in the licensed fishing area.The main mechanism forming this distribution pattern is the local circulation induced by the nonlinear interaction of topography and tidal flow.Both the Lagrangian coherent structure analysis and the particle trajectory tracking indicate that Acetes chinensis in the licensed fishing area come from the nearshore estuary.This work contributed to the adjustment of licensed fishing area and the efficient utilization of fishery resources.
基金Supported by The National Natural Science Foundation of China,No.82104989.
文摘BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.