期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Two-level Bregmanized method for image interpolation with graph regularized sparse coding 被引量:1
1
作者 刘且根 张明辉 梁栋 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期384-388,共5页
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne... A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 image interpolation Bregman iterative method graph regularized sparse coding alternating direction method
下载PDF
SPARSE SEQUENCE CONSTRUCTION OF LDPC CODES
2
作者 He Shanbao Zhao Chunming Shi Zhihua 《Journal of Electronics(China)》 2005年第5期520-523,共4页
This letter proposes a novel and simple construction of regular Low-Density Parity-Check (LDPC) codes using sparse binary sequences. It utilizes the cyclic cross correlation function of sparse sequences to generate co... This letter proposes a novel and simple construction of regular Low-Density Parity-Check (LDPC) codes using sparse binary sequences. It utilizes the cyclic cross correlation function of sparse sequences to generate codes with girth8. The new codes perform well using the sumproduct decoding. Low encodingcomplexity can also be achieved due to the inherent quasi-cyclic structure of the codes. 展开更多
关键词 Block codes Low-Density Parity-Check(LDPC) codes regular codes CONSTRUCTION
下载PDF
Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction 被引量:1
3
作者 张明辉 尹子瑞 +2 位作者 卢红阳 吴建华 刘且根 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期434-441,共8页
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ... The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding Bregman iterative method dictionary updating alternating direction method
下载PDF
Two-Level Bregman Method for MRI Reconstruction with Graph Regularized Sparse Coding
4
作者 刘且根 卢红阳 张明辉 《Transactions of Tianjin University》 EI CAS 2016年第1期24-34,共11页
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the... In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures. 展开更多
关键词 magnetic resonance imaging graph regularized sparse coding dictionary learning Bregman iterative method alternating direction method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部