The problem of determining the pass on heat coefficient of the water-bearing stratum in geothermal reservior exploitation is investigated using the regularised output-least-square formulation. The regularity propertie...The problem of determining the pass on heat coefficient of the water-bearing stratum in geothermal reservior exploitation is investigated using the regularised output-least-square formulation. The regularity properties of the coefficient is obtained.展开更多
In this paper, the integral problem for linear and nonlinear wave equations is studied. The equation involves abstract operator A in Hilbert space H. Here, assuming enough smoothness on the initial data and the operat...In this paper, the integral problem for linear and nonlinear wave equations is studied. The equation involves abstract operator A in Hilbert space H. Here, assuming enough smoothness on the initial data and the operators, the existence, uniqueness, regularity properties of solutions are established. By choosing the space H and A, the regularity properties of solutions of a wide class of wave equations in the field of physics are obtained.展开更多
Fractional operators are widely used in mathematical models describing abnormal and nonlocal phenomena.Although there are extensive numerical methods for solving the corresponding model problems,theoretical analysis s...Fractional operators are widely used in mathematical models describing abnormal and nonlocal phenomena.Although there are extensive numerical methods for solving the corresponding model problems,theoretical analysis such as the regularity result,or the relationship between the left-side and right-side fractional operators is seldom mentioned.Instead of considering the fractional derivative spaces,this paper starts from discussing the image spaces of Riemann-Liouville fractional integrals of L_(p)(Ω) functions,since the fractional derivative operators that are often used are all pseudo-differential.Then the high regularity situation-the image spaces of Riemann-Liouville fractional integral operators on the W^(m,p)(Ω) space is considered.Equivalent characterizations of the defined spaces,as well as those of the intersection of the left-side and right-side spaces are given.The behavior of the functions in the defined spaces at both the nearby boundary point/points and the points in the domain is demonstrated in a clear way.Besides,tempered fractional operators are shown to be reciprocal to the corresponding Riemann-Liouville fractional operators,which is expected to contribute some theoretical support for relevant numerical methods.Last,we also provide some instructions on how to take advantage of the introduced spaces when numerically solving fractional equations.展开更多
文摘The problem of determining the pass on heat coefficient of the water-bearing stratum in geothermal reservior exploitation is investigated using the regularised output-least-square formulation. The regularity properties of the coefficient is obtained.
文摘In this paper, the integral problem for linear and nonlinear wave equations is studied. The equation involves abstract operator A in Hilbert space H. Here, assuming enough smoothness on the initial data and the operators, the existence, uniqueness, regularity properties of solutions are established. By choosing the space H and A, the regularity properties of solutions of a wide class of wave equations in the field of physics are obtained.
基金supported by National Natural Science Foundation of China(Grant No.11801448)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2018JQ1022).supported by National Natural Science Foundation of China(Grant No.11271173).
文摘Fractional operators are widely used in mathematical models describing abnormal and nonlocal phenomena.Although there are extensive numerical methods for solving the corresponding model problems,theoretical analysis such as the regularity result,or the relationship between the left-side and right-side fractional operators is seldom mentioned.Instead of considering the fractional derivative spaces,this paper starts from discussing the image spaces of Riemann-Liouville fractional integrals of L_(p)(Ω) functions,since the fractional derivative operators that are often used are all pseudo-differential.Then the high regularity situation-the image spaces of Riemann-Liouville fractional integral operators on the W^(m,p)(Ω) space is considered.Equivalent characterizations of the defined spaces,as well as those of the intersection of the left-side and right-side spaces are given.The behavior of the functions in the defined spaces at both the nearby boundary point/points and the points in the domain is demonstrated in a clear way.Besides,tempered fractional operators are shown to be reciprocal to the corresponding Riemann-Liouville fractional operators,which is expected to contribute some theoretical support for relevant numerical methods.Last,we also provide some instructions on how to take advantage of the introduced spaces when numerically solving fractional equations.