Carbon sinks constitute an important element within the complex phenomenon of global climate change,and forest ecosystems are important global carbon sinks.The Natural Forest Protection Program(NFPP) is an ecologica...Carbon sinks constitute an important element within the complex phenomenon of global climate change,and forest ecosystems are important global carbon sinks.The Natural Forest Protection Program(NFPP) is an ecological program in China that was established after catastrophic flooding in the country in 1998.The goals of the NFPP are to curb the deterioration of the ecological environment,strengthen the protection and restoration of habitat to increase biodiversity,and rehabilitate natural forests to support sustainable development in forest regions.This study looked at changes in carbon sequestration in a forested area of northeast China after the inception of the NFPP.The program divides China's natural forests into three classes—commercial and two types of noneconomic forests—that are subject to management regimes prescribing varying levels of timber harvest,afforestation,and reforestation.During the 18-year period from 1998 to 2015,the total amount of carbon sequestration increased at an average annual rate of 0.04 MT C.This trend reflects a transformation of forest management practices after implementation of the NFPP that resulted in prohibited and/or restricted logging and tighter regulation of allowable harvest levels for specific areas.In documenting this trend,guidelines for more effective implementation of forestry programs such as the NFPP in other countries in the future are also suggested.展开更多
In the recent 20 years, it is a trend that forest will be distributed to villagers to manage in the world.Also in China, "forestry three determinations" has been carried out since 1980, and many new forestry...In the recent 20 years, it is a trend that forest will be distributed to villagers to manage in the world.Also in China, "forestry three determinations" has been carried out since 1980, and many new forestry devolutionshave been put fotward to and come into being. To face the fact of overusing up natural forest to result in the deterioration of ecology environment, the strategy of naturaf forest protection project (NFPP) is raised after the heavyflood in 1998. Now, it i s paid close attention to systematically study to carry Out the strategies of NFPP in collective forest area, especially in the community of minority nationalities. Based on the case of forest resource management in Datu Miao Village, the experience of its forest management in the past is analyzed and the strategies of NFPP in collective forest area are put forward.展开更多
The current situation about the natural forest resources protection project in Haikou Forest Farm of Kunming on the protection of forest resources, forest fire prevention, forest administration resource management, fo...The current situation about the natural forest resources protection project in Haikou Forest Farm of Kunming on the protection of forest resources, forest fire prevention, forest administration resource management, forest pests, and money management was briefed. Achievements made in the implementation of natural forest protection project in Haikou Forest Farm were analyzed, and problems existing in the project as well as corresponding countermeasures were expounded.展开更多
With Mosuo's sacred natural sites of mountainous forest in Yongning-Lugu Lake area as the research subject,by using the method of ecology,the vegetation type in this area was initially identified.The control sampl...With Mosuo's sacred natural sites of mountainous forest in Yongning-Lugu Lake area as the research subject,by using the method of ecology,the vegetation type in this area was initially identified.The control sample plot of the same vegetation type at similar altitude and in similar soil condition would be selected and compared with the sample plot in sacred natural sites at length,so as to quantitatively analyze the protection of biological diversity in the perspective of ecological system.It showed that under the circumstance of the damage of ecological environment,complete natural vertical pattern was preserved thanks to sacred natural sites of mountainous forest established by reason of traditional religion and culture.The results of research and quantitative analysis showed that compared with the control sample plot of the same vegetation type,sacred natural sites were high in biological diversity and the species composition of plant community in sacred natural sites was closer to that of primitive forest.The result of quantitative analysis also indicated that sacred natural sites played a remarkable role in protecting vegetation and this protective function became more remarkable if the altitude was higher.And human were reminded to pay close attention to the preservation and protection function of sacred natural sites to natural ecological system at high altitude.展开更多
The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role i...The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role in increasing the carbon storage of forest ecosystems.The program covers 17 provinces,autonomous regions,and municipalities with correspondingly diverse forest resources and environments,ecological features,engineering measures and forest management regimes,all of which affect regional carbon storage.In this study,volume of timber harvest,tending area,pest-infested forest,firedamaged forest,reforestation,and average annual precipitation,and temperature were evaluated as factors that influence carbon storage.We developed a vector autoregression model for these seven indicators and we studied the dominant factors of carbon storage in the areas covered by NFPP.Timber harvest was the dominant factorinfluencing carbon storage in the Yellow and Yangtze River basins.Reforestation contributed most to carbon storage in the state-owned forest region in Xinjiang.In state-owned forest regions of Heilongjiang and Jilin Provinces,the dominant factors were forest fires and forest cultivation,respectively.For the enhancement of carbon sequestration capacity,a longer rotation period and a smaller timber harvest are recommended for the Yellow and Yangtze River basins.Trees should be planted in stateowned forests in Xinjiang.Forest fires should be prevented in state-owned forests in Heilongjiang,and greater forest tending efforts should be made in the state-owned forests in Jilin.展开更多
Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass den...Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass density and age of planted forests in different regions of the country. Combined with the plantation area in the first-stage of the Natural Forest Protection(NFP) program(1998–2010), this study calculated the biomass carbon storage of the afforestation in the first-stage of the program. On this basis, the carbon sequestration potential of these forests was estimated for the second stage of the program(2011–2020). Biomass carbon storage of plantation established in the first stage of the program was 33.67 Tg C, which was majority accounted by protection forests(30.26 Tg C). There was a significant difference among carbon storage in different regions, which depended on the relationship of biomass carbon density, forest age and plantation area. Under the natural growth, the carbon storage was forecasted to increase annually from 2011 to 2020, reaching 96.03 Tg C at the end of the second-stage of the program in 2020. The annual growth of the carbon storage was forecasted to be 6.24 Tg C/yr, which suggested that NFP program has a significant potential for enhancing carbon sequestration in plantation forests under its domain.展开更多
In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the sta...In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the state of the country's forests and reducing the risk of erosion and flooding. A second phase of this program is currently being discussed. In this paper, contingent valuation is used to estimate the WTP (willingness to pay) for maintaining the program among the inhabitants in Heilongjiang Province in northern China. The results show that, even with fairly conservative assumptions, the aggregated WTP for maintaining the program for another five years is some 3.24 billion yuan per year. This can be compared with the current cost of the Program in the province, which is some 1.57 billion yuan per year.展开更多
Natural, protected areas offer many possibili- ties for recreation in rural areas such as camping, one of the most popular activities. The system established for pro- tected areas in Turkey aims to provide a foundatio...Natural, protected areas offer many possibili- ties for recreation in rural areas such as camping, one of the most popular activities. The system established for pro- tected areas in Turkey aims to provide a foundation for conserving areas for recreation. One such area, Abant Natural Park, is convenient for visits from Turkey's two most populated metropolitan areas, Istanbul and Ankara. It also attracts tourists from other regions and countries. The aim of the present study was to evaluate the vegetation loss and land cover changes due to picnic/camping, transhu- mance, and construction over 40 years (1966-2004) in the park using data on visitor numbers, vegetation patches, corridors and connectivity. For evaluating landscape vari- ables, remote sensing data and aerial photos were used. When aerial photos were imported into the ERDAS Imagine program, ground control points identified, and individual images orthorectified, land degradation was not found in the use of camping areas. Moreover, manmade areas (road, car park and hotel) observably increased, thus decreasing the forest lands. The findings show that the land use types that have had the greatest ecological impact are transhumance and construction of hotels, which also require infrastructure development. The intensity of the ecological effects mandates precautions to lessen the impacts and the need for continuing assessment to ensure sustainable use of the area.展开更多
Biological protection of plants: definition and objectives. Technologically, biological protection of plants (hereinafter bioprotection) is a high agricultural technology involving agricultural landscape approach and ...Biological protection of plants: definition and objectives. Technologically, biological protection of plants (hereinafter bioprotection) is a high agricultural technology involving agricultural landscape approach and basee on an ecological imperative, namely “use living beings against living beings”. In a wide sense, present-day bioprotection is a fundamental and applied field of knowledge providing harmless suppression of harmful agents during cultivation and storage of agricultural crops by use natural and (or) artificially constructed organisms (including genetically modified ones having pesticidal properties) and products of their live cycle. The overall objective of bioprotection consists in producing harmless, profitable and high-quality vegetative raw material, food, fodder. At the same time, bioprotection agrotechnologies are important environment forming and environment maintaining factors, steady and positively influencing the health of both rural ethnos, and agrosphere as a whole. Realization of integrated bioprotection approaches should provide minimum destruction of beneficial and non-target organisms, excluding the succession of harmful species and appearance of species resistant to biocontrol agents. 2. Theoretical foundation of bioprotection. The following postulates and imperatives of biosphere science, agrarian and social ecology make the scientific basis of bioprotection: “The Nature knows the how and why of things better”; Steady, balanced development of agrosphere (proceeding from a presumption of life support) is based on biocentrism and biosystem relations, or consortism of its consorbents; Control of the agrosphere by human beings could be effective only in case of primary realization of biocenotic regulation; Biocenotic regulation, dynamics of the number and species diversity of agrosphere is realized through trophically similar cenoconsorcia and tritrophic systems, that provides maintenance and preservation of trophically proved critical level of harmful species; Biotic and man-caused effects on argosphere are regularly registered and the degree of these effects on non-target biota is comprehensively estimated, operative measures to prevent its elimination are taken, if necessary. Thus, artificial agrocenoses and agroecosystems are immanent components of the agrospehere. Functioning of their bioresources meets the same laws of the Nature, as the functioning of the biota of natural ground ecosystems. When agrocenoses and agroecosystems make a single whole with the elements of preserved natural ecosystems, reproduction of bioresources, their protection against expansion of competitive and cosmopolitan species are realized at a level of steadily functioning agrocenoconsorcia, where “living beings protect living beings”. 3. Bioprotection and agrosphere. Present-day bioprotection is based on agrolandscape approaches. The major global function of the agrolandscape involves utilization of maximum quantity of solar energy. Modern geosystemic definition of the agrolandscape emphasizes not only its production abilities, but also its social and design-aesthetic functions: “... is an existing geosystem anthropogenically modified for agricultural use and formed with the purpose of the most effective and ecologically safe use of natural and anthropogenic resources for manufacturing economically and socially reasonable quantity of agricultural production and creation of the welfare and spiritual environment for harmonious development of humans” (A.V. Zaharenko, 2004) . The paradox is, that current plant growing (initially based on the use of gratuitous, inexhaustible solar energy and renewed resources of agrosphere) has turned in the most resource uneconomic branch of economy by the beginning of XXI century. Therefore agricultural technologies, including protection of plants, should mostly use renewable, instead of exhaustible resources and not renewable sources of raw material and energy, materialized in agrochemicals, chemical pesticides, oil展开更多
Changbai Mountain forest area is not only is a national timber base but also a green ecological defense for Songliao Plain of NE China. The Natural Forest Protection Project of this area has an important bearing on th...Changbai Mountain forest area is not only is a national timber base but also a green ecological defense for Songliao Plain of NE China. The Natural Forest Protection Project of this area has an important bearing on the social and economic sustainable development of Jilin Province or even the whole forest area in NE China. This paper summarized general conditions of natural forest in Changbai Mountain state-owned forest area and put forward six problems need to be urgently solved and five strategic suggestions on natural forest protection and sustainable management.展开更多
Spruce budworm (SBW) outbreaks are one of the most devastating natural disturbances in spruce-balsam fir forests of eastern North America. Both early intervention strategy (EIS) and foliage protection strategy (FP) ar...Spruce budworm (SBW) outbreaks are one of the most devastating natural disturbances in spruce-balsam fir forests of eastern North America. Both early intervention strategy (EIS) and foliage protection strategy (FP) are being tested to limit forest losses, but the quantitative impact on forest carbon (C) dynamics is still unclear. In this study, we designed 19 separate scenarios of no intervention or varying success of EIS, FP, and their combination on SBW caused defoliation and mortality. We then used the TRIPLEX-Insect model to quantify their effects on forest C dynamics in the forests of the four provinces of Atlantic Canada. A scenario applying FP to 10%of the area with the greatest potential C losses of living biomass, protecting foliage in 10%of the forests is more realistic than higher proportion of FP given the high cost and large areas involved, resulted in reducing average cumulative net ecosystem productivity (NEP) from 2020 to 2039 by 56%–127%compared to a no outbreak scenario.Our results showed that FP would have to be applied everywhere to reduce tree mortality and increase NEP more than 8 years of successful EIS applied. However, if EIS can be successfully implemented for 12 years, it will maintain more forest C than FP applied everywhere during a moderate outbreak. We also found that the combination of EIS followed by FP in 10%of the areas disturbed by the SBW could maintain average cumulative NEP at similar levels to no defoliation in every province of Atlantic Canada. Black/red spruce forests younger than 60years old underwent the smallest changes in C dynamics whether using EIS, FP, or both. This highlights the importance of forest species, forest age, and their interactions on the effectiveness of a treatment during SBW outbreak. Overall, 31%–76%of the study area in Atlantic Canada could convert from a C sink to a source by 2039,if no protective measures are used under the worst-case scenarios, thus contributing to future climate warming.展开更多
As a result of socio-economic changes and land abandonment,the main ecological driver of the Carpathian landscape is the progression of the natural forest succession process.Thus,aspects of this process have become wo...As a result of socio-economic changes and land abandonment,the main ecological driver of the Carpathian landscape is the progression of the natural forest succession process.Thus,aspects of this process have become worthy of attention,especially in the context of carbon sequestration and the management of protected areas.Soil processes,especially within the topsoil,are some of the most susceptible to change,due to the accumulation of organic matter during such land-use transformations.The purposes of this study were to investigate the differences in topsoil development using the A Horizon Development Index(ADI)and to study the composition of humic substances and advanced organic matter humification in different land-use areas in selected Carpathian national parks,i.e.Bieszczady,Magura and Pieniny National Parks in southern Poland.Additionally,a goal of this study was to compare the ADI and the spectroscopic coefficients of humic substances as indicators of the degree of humus horizon shaping as well as advanced organic matter humification.In total,ten transects were selected,each consisting of three different land-use areas:semi-natural meadow,successional forest and old-growth forest.Soil colour was determined in fresh and air-dried samples using the Munsell colour chart.In air-dried soil samples p H,soil texture,total organic carbon and total nitrogen were measured.Humic substances were extracted and further characterized by UV-VIS spectroscopy.The ADI confirmed the influence of natural forest succession on soil colour darkening and the development of the uppermost soil layer.Spectroscopic analyses of humic substances showed two different patterns depending on soil depth.In the 0–10 cm layer,natural forest succession reduced the rate of the humification process and decreased the degree of maturity of fulvic acids;in the 10–20 cm layer,it led to an increase in the rate of the humification process and a decrease in the content of humic and fulvic acids at the beginning of the transformation.The comparison of two different indicators of soil development–the ADI and the spectroscopic coefficients of humic substances(Q_(4/6),Q_(2/4),Q_(2/3),Δlog K)–indicated that these indexes are based on different features of soil and cannot be used interchangeably.展开更多
Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cul...Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.展开更多
Ever since the disastrous floods of 1998, the Chinese government has used the Natural Forest Protection and Sloping Land Conversion Programs to promote afforestation and reforestation as means to reduce runoff, contro...Ever since the disastrous floods of 1998, the Chinese government has used the Natural Forest Protection and Sloping Land Conversion Programs to promote afforestation and reforestation as means to reduce runoff, control erosion, and stabilize local livelihoods. These two ambitious programs have been reported as large-scale successes, contributing to an overall increase in China’s forest cover and to the stated goals of environmental stabilization. A small-scale field study at the project level of the implementation of these two programs in Baiwu Township, Yanyuan County, Sichuan, casts doubt upon the accuracy and reliability of these claims of success; ground observations revealed utter failure in some sites and only marginal success in others. Reasons for this discrepancy are posited as involving ecological, economic, and bureaucratic factors. Further research is suggested to determine whether these discrepancies are merely local aberrations or represent larger-scale failures in reforestation programs.展开更多
This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210 m in the Trans-Mexican Volcanic ...This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210 m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature (P/T) index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1℃ to 1.7℃ by 2020 and by 2℃ to 3℃ by 2o5o. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon, and a reduction between 3% and 20% is expected for 2050. The reductions in water availability were projected for all altitude levels and plant communities. The most marked reduction was under the HADLEY- A2 scenario, in which the lower limit of the altitudinal range increased from 2,71o to 3,31o m (2050 horizon) with reductions in the P/T index between 36% and 39% compared to the current climate. Most plant species tended to shift their distribution from 20o to 300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2o5o temporal horizon, 3o% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival (〉4,210 m).展开更多
A study was conducted on the forest structure of Pinus hartwegii Lindl., located at the Cofre de Perote National Park. The density, diameter, height and wooded coverage were evaluated along an altitudinal gradient fro...A study was conducted on the forest structure of Pinus hartwegii Lindl., located at the Cofre de Perote National Park. The density, diameter, height and wooded coverage were evaluated along an altitudinal gradient from 3500 to 4000 meters in 20 plots of 100 m2. The structure of the population was found to be in the form of an “inverted J”. No statistically significant differences were found for any of the above-mentioned variables evaluated in the altitudinal range. A high density of suppressed individuals was found to occur at 50% of the sites sampled. Given the suppression characteristics of the trees, shelterwood is suggested for a better development of the woodland mass, as well as the introduction of mycorrhizal plants.展开更多
Gungjor County in Qamdois situated on the middlesection of the Jinsha-jiang River,on the upperreaches of the Yangtze Riverand in the northern part ofHenduan Mountains.Foreststhere total 220,198 hectares,and the forest...Gungjor County in Qamdois situated on the middlesection of the Jinsha-jiang River,on the upperreaches of the Yangtze Riverand in the northern part ofHenduan Mountains.Foreststhere total 220,198 hectares,and the forested area totals60,791 hectares.They com-bine to function as a naturalscreen on the Yangtze’s upperreaches.展开更多
基金supported by San Chazi Forestry Bureau,and the key project of Chinese Academy of Sciences,Grant No.KFZD-SW-305-001
文摘Carbon sinks constitute an important element within the complex phenomenon of global climate change,and forest ecosystems are important global carbon sinks.The Natural Forest Protection Program(NFPP) is an ecological program in China that was established after catastrophic flooding in the country in 1998.The goals of the NFPP are to curb the deterioration of the ecological environment,strengthen the protection and restoration of habitat to increase biodiversity,and rehabilitate natural forests to support sustainable development in forest regions.This study looked at changes in carbon sequestration in a forested area of northeast China after the inception of the NFPP.The program divides China's natural forests into three classes—commercial and two types of noneconomic forests—that are subject to management regimes prescribing varying levels of timber harvest,afforestation,and reforestation.During the 18-year period from 1998 to 2015,the total amount of carbon sequestration increased at an average annual rate of 0.04 MT C.This trend reflects a transformation of forest management practices after implementation of the NFPP that resulted in prohibited and/or restricted logging and tighter regulation of allowable harvest levels for specific areas.In documenting this trend,guidelines for more effective implementation of forestry programs such as the NFPP in other countries in the future are also suggested.
文摘In the recent 20 years, it is a trend that forest will be distributed to villagers to manage in the world.Also in China, "forestry three determinations" has been carried out since 1980, and many new forestry devolutionshave been put fotward to and come into being. To face the fact of overusing up natural forest to result in the deterioration of ecology environment, the strategy of naturaf forest protection project (NFPP) is raised after the heavyflood in 1998. Now, it i s paid close attention to systematically study to carry Out the strategies of NFPP in collective forest area, especially in the community of minority nationalities. Based on the case of forest resource management in Datu Miao Village, the experience of its forest management in the past is analyzed and the strategies of NFPP in collective forest area are put forward.
基金Sponsored by Science and Technology Projects of Kunming(2015-1-S-00643)
文摘The current situation about the natural forest resources protection project in Haikou Forest Farm of Kunming on the protection of forest resources, forest fire prevention, forest administration resource management, forest pests, and money management was briefed. Achievements made in the implementation of natural forest protection project in Haikou Forest Farm were analyzed, and problems existing in the project as well as corresponding countermeasures were expounded.
基金Supported by Key Project of Natural Science of Sichuan Province Office of Education(2003A183)Key Project of Natural Science of Liangshan Prefecture Science Commission in 2004(Liangshan Prefecture Science Bureau[2004]46J)~~
文摘With Mosuo's sacred natural sites of mountainous forest in Yongning-Lugu Lake area as the research subject,by using the method of ecology,the vegetation type in this area was initially identified.The control sample plot of the same vegetation type at similar altitude and in similar soil condition would be selected and compared with the sample plot in sacred natural sites at length,so as to quantitatively analyze the protection of biological diversity in the perspective of ecological system.It showed that under the circumstance of the damage of ecological environment,complete natural vertical pattern was preserved thanks to sacred natural sites of mountainous forest established by reason of traditional religion and culture.The results of research and quantitative analysis showed that compared with the control sample plot of the same vegetation type,sacred natural sites were high in biological diversity and the species composition of plant community in sacred natural sites was closer to that of primitive forest.The result of quantitative analysis also indicated that sacred natural sites played a remarkable role in protecting vegetation and this protective function became more remarkable if the altitude was higher.And human were reminded to pay close attention to the preservation and protection function of sacred natural sites to natural ecological system at high altitude.
基金funded by Special Research Project of Institute of Applied Ecology,CAS(No.Y5YZX151YD)Key Laboratory of Forest Ecology and Management,Institute of Applied Ecology,CAS(No.LFEM2016-05)
文摘The Natural Forest Protection Program(NFPP)is one of the key ecological forestry programs in China.It not only facilitates the improvement of forest ecological quality in NFPP areas,but also plays a significant role in increasing the carbon storage of forest ecosystems.The program covers 17 provinces,autonomous regions,and municipalities with correspondingly diverse forest resources and environments,ecological features,engineering measures and forest management regimes,all of which affect regional carbon storage.In this study,volume of timber harvest,tending area,pest-infested forest,firedamaged forest,reforestation,and average annual precipitation,and temperature were evaluated as factors that influence carbon storage.We developed a vector autoregression model for these seven indicators and we studied the dominant factors of carbon storage in the areas covered by NFPP.Timber harvest was the dominant factorinfluencing carbon storage in the Yellow and Yangtze River basins.Reforestation contributed most to carbon storage in the state-owned forest region in Xinjiang.In state-owned forest regions of Heilongjiang and Jilin Provinces,the dominant factors were forest fires and forest cultivation,respectively.For the enhancement of carbon sequestration capacity,a longer rotation period and a smaller timber harvest are recommended for the Yellow and Yangtze River basins.Trees should be planted in stateowned forests in Xinjiang.Forest fires should be prevented in state-owned forests in Heilongjiang,and greater forest tending efforts should be made in the state-owned forests in Jilin.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060200)National Key Technology Research and Development Program of China(No.2012BAD22B04)Visiting Professorship for Senior International Scientists of Chinese Academy of Sciences(No.2012T1Z0006)
文摘Based on the data from China′s Seventh Forest Inventory for the period of 2004–2008, area and stand volume of different types and age-classes of plantation were used to establish the relationship between biomass density and age of planted forests in different regions of the country. Combined with the plantation area in the first-stage of the Natural Forest Protection(NFP) program(1998–2010), this study calculated the biomass carbon storage of the afforestation in the first-stage of the program. On this basis, the carbon sequestration potential of these forests was estimated for the second stage of the program(2011–2020). Biomass carbon storage of plantation established in the first stage of the program was 33.67 Tg C, which was majority accounted by protection forests(30.26 Tg C). There was a significant difference among carbon storage in different regions, which depended on the relationship of biomass carbon density, forest age and plantation area. Under the natural growth, the carbon storage was forecasted to increase annually from 2011 to 2020, reaching 96.03 Tg C at the end of the second-stage of the program in 2020. The annual growth of the carbon storage was forecasted to be 6.24 Tg C/yr, which suggested that NFP program has a significant potential for enhancing carbon sequestration in plantation forests under its domain.
文摘In 1998, the Chinese Government implemented the NFPP (Natural Forest Protection Program), which included logging restrictions, protected areas, replanting, and a range of other policies aimed at safeguarding the state of the country's forests and reducing the risk of erosion and flooding. A second phase of this program is currently being discussed. In this paper, contingent valuation is used to estimate the WTP (willingness to pay) for maintaining the program among the inhabitants in Heilongjiang Province in northern China. The results show that, even with fairly conservative assumptions, the aggregated WTP for maintaining the program for another five years is some 3.24 billion yuan per year. This can be compared with the current cost of the Program in the province, which is some 1.57 billion yuan per year.
文摘Natural, protected areas offer many possibili- ties for recreation in rural areas such as camping, one of the most popular activities. The system established for pro- tected areas in Turkey aims to provide a foundation for conserving areas for recreation. One such area, Abant Natural Park, is convenient for visits from Turkey's two most populated metropolitan areas, Istanbul and Ankara. It also attracts tourists from other regions and countries. The aim of the present study was to evaluate the vegetation loss and land cover changes due to picnic/camping, transhu- mance, and construction over 40 years (1966-2004) in the park using data on visitor numbers, vegetation patches, corridors and connectivity. For evaluating landscape vari- ables, remote sensing data and aerial photos were used. When aerial photos were imported into the ERDAS Imagine program, ground control points identified, and individual images orthorectified, land degradation was not found in the use of camping areas. Moreover, manmade areas (road, car park and hotel) observably increased, thus decreasing the forest lands. The findings show that the land use types that have had the greatest ecological impact are transhumance and construction of hotels, which also require infrastructure development. The intensity of the ecological effects mandates precautions to lessen the impacts and the need for continuing assessment to ensure sustainable use of the area.
文摘Biological protection of plants: definition and objectives. Technologically, biological protection of plants (hereinafter bioprotection) is a high agricultural technology involving agricultural landscape approach and basee on an ecological imperative, namely “use living beings against living beings”. In a wide sense, present-day bioprotection is a fundamental and applied field of knowledge providing harmless suppression of harmful agents during cultivation and storage of agricultural crops by use natural and (or) artificially constructed organisms (including genetically modified ones having pesticidal properties) and products of their live cycle. The overall objective of bioprotection consists in producing harmless, profitable and high-quality vegetative raw material, food, fodder. At the same time, bioprotection agrotechnologies are important environment forming and environment maintaining factors, steady and positively influencing the health of both rural ethnos, and agrosphere as a whole. Realization of integrated bioprotection approaches should provide minimum destruction of beneficial and non-target organisms, excluding the succession of harmful species and appearance of species resistant to biocontrol agents. 2. Theoretical foundation of bioprotection. The following postulates and imperatives of biosphere science, agrarian and social ecology make the scientific basis of bioprotection: “The Nature knows the how and why of things better”; Steady, balanced development of agrosphere (proceeding from a presumption of life support) is based on biocentrism and biosystem relations, or consortism of its consorbents; Control of the agrosphere by human beings could be effective only in case of primary realization of biocenotic regulation; Biocenotic regulation, dynamics of the number and species diversity of agrosphere is realized through trophically similar cenoconsorcia and tritrophic systems, that provides maintenance and preservation of trophically proved critical level of harmful species; Biotic and man-caused effects on argosphere are regularly registered and the degree of these effects on non-target biota is comprehensively estimated, operative measures to prevent its elimination are taken, if necessary. Thus, artificial agrocenoses and agroecosystems are immanent components of the agrospehere. Functioning of their bioresources meets the same laws of the Nature, as the functioning of the biota of natural ground ecosystems. When agrocenoses and agroecosystems make a single whole with the elements of preserved natural ecosystems, reproduction of bioresources, their protection against expansion of competitive and cosmopolitan species are realized at a level of steadily functioning agrocenoconsorcia, where “living beings protect living beings”. 3. Bioprotection and agrosphere. Present-day bioprotection is based on agrolandscape approaches. The major global function of the agrolandscape involves utilization of maximum quantity of solar energy. Modern geosystemic definition of the agrolandscape emphasizes not only its production abilities, but also its social and design-aesthetic functions: “... is an existing geosystem anthropogenically modified for agricultural use and formed with the purpose of the most effective and ecologically safe use of natural and anthropogenic resources for manufacturing economically and socially reasonable quantity of agricultural production and creation of the welfare and spiritual environment for harmonious development of humans” (A.V. Zaharenko, 2004) . The paradox is, that current plant growing (initially based on the use of gratuitous, inexhaustible solar energy and renewed resources of agrosphere) has turned in the most resource uneconomic branch of economy by the beginning of XXI century. Therefore agricultural technologies, including protection of plants, should mostly use renewable, instead of exhaustible resources and not renewable sources of raw material and energy, materialized in agrochemicals, chemical pesticides, oil
文摘Changbai Mountain forest area is not only is a national timber base but also a green ecological defense for Songliao Plain of NE China. The Natural Forest Protection Project of this area has an important bearing on the social and economic sustainable development of Jilin Province or even the whole forest area in NE China. This paper summarized general conditions of natural forest in Changbai Mountain state-owned forest area and put forward six problems need to be urgently solved and five strategic suggestions on natural forest protection and sustainable management.
基金part of an Early Intervention Strategy research project funded by Natural Resources Canada and the Healthy Forest Partnershipfinanced by the Fonds de Recherche du Québec (FQRNT) programNatural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
文摘Spruce budworm (SBW) outbreaks are one of the most devastating natural disturbances in spruce-balsam fir forests of eastern North America. Both early intervention strategy (EIS) and foliage protection strategy (FP) are being tested to limit forest losses, but the quantitative impact on forest carbon (C) dynamics is still unclear. In this study, we designed 19 separate scenarios of no intervention or varying success of EIS, FP, and their combination on SBW caused defoliation and mortality. We then used the TRIPLEX-Insect model to quantify their effects on forest C dynamics in the forests of the four provinces of Atlantic Canada. A scenario applying FP to 10%of the area with the greatest potential C losses of living biomass, protecting foliage in 10%of the forests is more realistic than higher proportion of FP given the high cost and large areas involved, resulted in reducing average cumulative net ecosystem productivity (NEP) from 2020 to 2039 by 56%–127%compared to a no outbreak scenario.Our results showed that FP would have to be applied everywhere to reduce tree mortality and increase NEP more than 8 years of successful EIS applied. However, if EIS can be successfully implemented for 12 years, it will maintain more forest C than FP applied everywhere during a moderate outbreak. We also found that the combination of EIS followed by FP in 10%of the areas disturbed by the SBW could maintain average cumulative NEP at similar levels to no defoliation in every province of Atlantic Canada. Black/red spruce forests younger than 60years old underwent the smallest changes in C dynamics whether using EIS, FP, or both. This highlights the importance of forest species, forest age, and their interactions on the effectiveness of a treatment during SBW outbreak. Overall, 31%–76%of the study area in Atlantic Canada could convert from a C sink to a source by 2039,if no protective measures are used under the worst-case scenarios, thus contributing to future climate warming.
基金supported by Statutory financial support of Ministry of Science and Higher Education RP Department of Soil Science and Agrophysics[010013D011 in 2021]University of Agriculture in Krakow。
文摘As a result of socio-economic changes and land abandonment,the main ecological driver of the Carpathian landscape is the progression of the natural forest succession process.Thus,aspects of this process have become worthy of attention,especially in the context of carbon sequestration and the management of protected areas.Soil processes,especially within the topsoil,are some of the most susceptible to change,due to the accumulation of organic matter during such land-use transformations.The purposes of this study were to investigate the differences in topsoil development using the A Horizon Development Index(ADI)and to study the composition of humic substances and advanced organic matter humification in different land-use areas in selected Carpathian national parks,i.e.Bieszczady,Magura and Pieniny National Parks in southern Poland.Additionally,a goal of this study was to compare the ADI and the spectroscopic coefficients of humic substances as indicators of the degree of humus horizon shaping as well as advanced organic matter humification.In total,ten transects were selected,each consisting of three different land-use areas:semi-natural meadow,successional forest and old-growth forest.Soil colour was determined in fresh and air-dried samples using the Munsell colour chart.In air-dried soil samples p H,soil texture,total organic carbon and total nitrogen were measured.Humic substances were extracted and further characterized by UV-VIS spectroscopy.The ADI confirmed the influence of natural forest succession on soil colour darkening and the development of the uppermost soil layer.Spectroscopic analyses of humic substances showed two different patterns depending on soil depth.In the 0–10 cm layer,natural forest succession reduced the rate of the humification process and decreased the degree of maturity of fulvic acids;in the 10–20 cm layer,it led to an increase in the rate of the humification process and a decrease in the content of humic and fulvic acids at the beginning of the transformation.The comparison of two different indicators of soil development–the ADI and the spectroscopic coefficients of humic substances(Q_(4/6),Q_(2/4),Q_(2/3),Δlog K)–indicated that these indexes are based on different features of soil and cannot be used interchangeably.
文摘Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.
文摘Ever since the disastrous floods of 1998, the Chinese government has used the Natural Forest Protection and Sloping Land Conversion Programs to promote afforestation and reforestation as means to reduce runoff, control erosion, and stabilize local livelihoods. These two ambitious programs have been reported as large-scale successes, contributing to an overall increase in China’s forest cover and to the stated goals of environmental stabilization. A small-scale field study at the project level of the implementation of these two programs in Baiwu Township, Yanyuan County, Sichuan, casts doubt upon the accuracy and reliability of these claims of success; ground observations revealed utter failure in some sites and only marginal success in others. Reasons for this discrepancy are posited as involving ecological, economic, and bureaucratic factors. Further research is suggested to determine whether these discrepancies are merely local aberrations or represent larger-scale failures in reforestation programs.
文摘This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210 m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature (P/T) index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1℃ to 1.7℃ by 2020 and by 2℃ to 3℃ by 2o5o. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon, and a reduction between 3% and 20% is expected for 2050. The reductions in water availability were projected for all altitude levels and plant communities. The most marked reduction was under the HADLEY- A2 scenario, in which the lower limit of the altitudinal range increased from 2,71o to 3,31o m (2050 horizon) with reductions in the P/T index between 36% and 39% compared to the current climate. Most plant species tended to shift their distribution from 20o to 300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2o5o temporal horizon, 3o% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival (〉4,210 m).
文摘A study was conducted on the forest structure of Pinus hartwegii Lindl., located at the Cofre de Perote National Park. The density, diameter, height and wooded coverage were evaluated along an altitudinal gradient from 3500 to 4000 meters in 20 plots of 100 m2. The structure of the population was found to be in the form of an “inverted J”. No statistically significant differences were found for any of the above-mentioned variables evaluated in the altitudinal range. A high density of suppressed individuals was found to occur at 50% of the sites sampled. Given the suppression characteristics of the trees, shelterwood is suggested for a better development of the woodland mass, as well as the introduction of mycorrhizal plants.
文摘Gungjor County in Qamdois situated on the middlesection of the Jinsha-jiang River,on the upperreaches of the Yangtze Riverand in the northern part ofHenduan Mountains.Foreststhere total 220,198 hectares,and the forested area totals60,791 hectares.They com-bine to function as a naturalscreen on the Yangtze’s upperreaches.