期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease
1
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of g protein signaling 6(RgS6)
下载PDF
RGS4 promotes the progression of gastric cancer through the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition
2
作者 Peng-Yu Chen Pei-Yao Wang +7 位作者 Bang Liu Yang-Pu Jia Zhao-Xiong Zhang Xin Liu Dao-Han Wang Yong-Jia Yan Wei-Hua Fu Feng Zhu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期113-127,共15页
BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progr... BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition. 展开更多
关键词 gastric cancer PROgNOSIS Regulator of g protein signaling 4 Focal adhesion kinase Epithelial-mesenchymal transition
下载PDF
Promotion of structural plasticity in area V2 of visual cortex prevents against object recognition memory deficits in aging and Alzheimer's disease rodents
3
作者 Irene Navarro-Lobato Mariam Masmudi-Martín +8 位作者 Manuel F.López-Aranda Juan F.López-Téllez Gloria Delgado Pablo Granados-Durán Celia Gaona-Romero Marta Carretero-Rey Sinforiano Posadas María E.Quiros-Ortega Zafar U.Khan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1835-1841,共7页
Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to ... Memory deficit,which is often associated with aging and many psychiatric,neurological,and neurodegenerative diseases,has been a challenging issue for treatment.Up till now,all potential drug candidates have failed to produce satisfa ctory effects.Therefore,in the search for a solution,we found that a treatment with the gene corresponding to the RGS14414protein in visual area V2,a brain area connected with brain circuits of the ventral stream and the medial temporal lobe,which is crucial for object recognition memory(ORM),can induce enhancement of ORM.In this study,we demonstrated that the same treatment with RGS14414in visual area V2,which is relatively unaffected in neurodegenerative diseases such as Alzheimer s disease,produced longlasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer’s disease.Furthermore,we found that the prevention of memory deficits was mediated through the upregulation of neuronal arbo rization and spine density,as well as an increase in brain-derived neurotrophic factor(BDNF).A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer s disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits.These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer’s disease.Therefore,our findings of RGS14414gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits. 展开更多
关键词 behavioral performance brain-derived neurotrophic factor cognitive dysfunction episodic memory memory circuit activation memory deficits memory enhancement object recognition memory prevention of memory loss regulator of g protein signaling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部