期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact
1
作者 N.SHAHVEISI S.FELI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期155-178,共24页
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate... The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed. 展开更多
关键词 analytical model piezoelectric layer curved sandwich beam glass reinforced laminate(GRL) pliable core low-velocity impact(LVI) classical non-adhesive elastic contact theory
下载PDF
Lagged strain of laminates in RC beams strengthened with fiber-reinforced polymer 被引量:5
2
作者 贺学军 周朝阳 +1 位作者 李毅卉 徐玲 《Journal of Central South University of Technology》 EI 2007年第3期431-435,共5页
Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of diff... Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of different preloaded states and nonlinear stress-strain relationship of compressed concrete were both taken into account in this approach. Then a simplified expression was given by ignoring tensile resistance of concrete. Comparison of analytical predictions with experimental results indicates satisfactory accuracy of the procedures. The errors are less than 8% and 10% respectively when the tensile resistance of concrete is or not considered. While the maximum error of existing procedures is up to 60%. 展开更多
关键词 reinforced concrete beam: bonded laminates strengthening: lagged strain: nreloaded state
下载PDF
FACTORS AFFECTING FATIGUE CRACK GROWTH RATES OF FIBER REINFORCED METAL LAMINATES
3
作者 郭亚军 吴学仁 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第2期73-77,共5页
FACTORSAFFECTINGFATIGUECRACKGROWTHRATESOFFIBERREINFORCEDMETALLAMINATESGUOYajun(郭亚军),WUXueren(吴学仁)(BeijingIns... FACTORSAFFECTINGFATIGUECRACKGROWTHRATESOFFIBERREINFORCEDMETALLAMINATESGUOYajun(郭亚军),WUXueren(吴学仁)(BeijingInstituteofAeronauti... 展开更多
关键词 fiber reinforced metal laminates (FRMLs) fatigue crack growth rate
下载PDF
A FATIGUE FAILURE CRITERION OF NOTCHED GFRP LAMINATES
4
作者 夏道家 徐惠民 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第2期137-140,共4页
A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to furt... A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to further experiments. The investigation is accomplished by obtaining experimental data on the notched specimens of glass fiber reinforced plastics (GFRP) with edged notches under tension tension cyclic loading. The process of initiation and growth of fatigue damage near the notch root is measured by means of the optic system with a computer controlled display (CCD) camera. The experimental results show that the number of loading cycles required to initiate fatigue damage is governed by the stress field intensity. 展开更多
关键词 fatigue damage glass fiber reinforced plastics laminates notched specimens stress field intensity
下载PDF
Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate 被引量:4
5
作者 WU Xin-tong ZHAN Li-hua +3 位作者 HUANG Ming-hui ZHAO Xing WANG Xun ZHAO Guo-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期657-668,共12页
Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ... Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components. 展开更多
关键词 carbon fiber reinforced aluminum laminate galvanic corrosion ELECTROCHEMISTRY interlaminar shear strength aluminum alloy
下载PDF
Vinylon Reinforced Aluminium Laminate
6
作者 Guoxin SUI Zhongguang ZHENG Chengti ZHOU Changxu SHI Institute of Metal Research,Academia Sinica,Shenyang,110015,ChinaBenlian ZHOU International Centre for Materials Physics,Academia Sinica,Shenyang,110015,China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1993年第5期382-384,共3页
A new kind of superhybrid composite material,vinylon reinforced aluminium laminate (VIRALL),has been developed by laminating the vinylon/epoxy prepreg layers and the aluminium alloy sheets alternatively.The mechanical... A new kind of superhybrid composite material,vinylon reinforced aluminium laminate (VIRALL),has been developed by laminating the vinylon/epoxy prepreg layers and the aluminium alloy sheets alternatively.The mechanical properties of VIRALL laminate have been tested and the results are dis- cussed in terms of laws of mixtures.About a 24% increase in tensile strength and a 36%decrease in tensile modulus to that of the corresponding aluminium were found,which kept good agreement with the laws of mixtures.Compared with the corresponding aluminium,VIRALL has lighter density and lower price.VIRALL is hoped to be a partial substitute for the civil aluminium alloy in the future. 展开更多
关键词 composite material vinylon reinforced aluminium laminate strength MODULUS density PRICE
下载PDF
Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates 被引量:10
7
作者 S.H. Song Y.S. Byun +3 位作者 T.W. Ku W.J. Song J. Kim B.S. Kang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第4期327-332,共6页
It is known that fiber metal laminates (FML) as one of hybrid materials with thin metal sheets and fiber/epoxy layers have the characteristics of the excellent damage tolerance, fatigue and impact properties with a ... It is known that fiber metal laminates (FML) as one of hybrid materials with thin metal sheets and fiber/epoxy layers have the characteristics of the excellent damage tolerance, fatigue and impact properties with a relatively low density. Therefore, the mechanical components using FML can contribute the enhanced safety level of the sound construction toward the whole body. In this study, the impact performance of carbon reinforced aluminum laminates (CARAL) is investigated by experiments and numerical simulations. Drop weight tests are carried out with the weight of 4.7 kg at the speed of 1 and 2 m/s, respectively. Dynamic non-linear transient analyses are also accomplished using a finite element analysis software, ABAQUS. The experiment results and numerical results are compared with impact load-time histories. Also, energy-time histories are applied to investigate the impact performance of CARAL. 展开更多
关键词 Fiber metal laminates (FML) Carbon reinforced aluminum laminates (CARAL) Numerical simulation Impact performance
原文传递
Prediction model for determining the optimum operational parameters in laser forming of fiber-reinforced composites 被引量:1
8
作者 Annamaria Gisario Mehrshad Mehrpouya +2 位作者 Atabak Rahimzadeh Andrea De Bartolomeis Massimiliano Barletta 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第2期242-251,共10页
Composite materials are widely employed in various industries,such as aerospace,automobile,and sports equipment,owing to their lightweight and strong structure in comparison with conventional materials.I aser material... Composite materials are widely employed in various industries,such as aerospace,automobile,and sports equipment,owing to their lightweight and strong structure in comparison with conventional materials.I aser material processing is a rapid technique for performing the various processes on composite materials.In particular,laser forming is a flexible and reliable approach for shaping fiber-metal laminates(FML.s),which are widely used in the aerospace industry due to several advantages,such as high strength and light weight.In this study,a prediction model was developed for determining the optimal laser parameters(power and speed)when forming FML composites.Artificial neural networks(ANNs)were applied to estimate the process outputs(temperature and bending angle)as a result of the modeling process.For this purpose,several ANN models were developed using various strategies.Finally,the achieved results demonstrated the advantage of the models for predicting the optimal operational parameters. 展开更多
关键词 Laser forming(LF) Fiber-reinforced composite Fiber-metal laminates(FMLs) Glass laminate aluminum reinforced epoxy(GLARE) Artificial neural networks(ANNs)
原文传递
Degradation Behavior of Epoxy Resins in Fibre Metal Laminates Under Thermal Conditions
9
作者 祝国梁 肖艳萍 +3 位作者 杨永祥 王俊 孙宝德 BOOM Rob 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第3期257-262,共6页
GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A38... GLARE (glass fibre/epoxy reinforced aluminum laminate) is a member of the fiber metal laminate (FML) family, and is built up of alternating metal and fiber layers. About 500 m2 GLARE is employed in each Airbus A380 because of the superior mechanical properties over the monolithic Muminum alloys, such as weight reduction, improved damage tolerance and higher ultimate tensile strength. Many tons of new GLARE scraps have been accumulated during the Airbus A380 manufacturing. Moreover, with the increasing plane orders of Airbus A380, more and more end-of-life (EOL) GLARE scrap will be generated after retire of planes within forty years. Thermal processing is a potential method for the material recycling and re-use from GLARE with the aim of environmental protection and economic benefits. The current study indicatdes that thermal delamination is a crucial pre-treatment step for the GLARE recycling. The decomposition behavior of the epoxy resins at elevated temperatures was investigated by using the simultaneous thermal analysis, thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Based on the thermal analysis results, GLARE thermal delamination experiments at refined temperatures were carried out to optimize the treatment temperature and holding time. 展开更多
关键词 fibre metal laminates GLARE (glass fibre/epoxy reinforced aluminum laminate) RECYCLING decomposition kinetics thermal degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部