期刊文献+
共找到509篇文章
< 1 2 26 >
每页显示 20 50 100
Mesoscopic investigation on seismic performance of corroded reinforced concrete columns
1
作者 Jin Liu Li Yanxi +1 位作者 Zhang Renbo Du Xiuli 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期969-985,共17页
In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be mor... In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be more serious.To investigate the seismic performance of corroded RC columns,a three-dimensional mesoscale finite element model was established.In this approach,concrete was considered as a three-phase composite composed of aggregate,mortar matrix and interfacial transition zone(ITZ).The nonlinear spring were used to describe the bond slip between steel and concrete.The degradation of the material properties of the steel rebar and cover concrete as well as the bonding performance due to corrosion were taken into account.The rationality of the developed numerical analysis model was verified by the good agreement between the numerical results and the available experimental observation.On this basis,the effect of corrosion level,axial force ratio and shear-span ratio on the seismic performance of corroded RC columns,including lateral bearing capacity,ductility,and energy consumption,were explored and discussed.The simulation results indicate that the mesoscopic method can consider the heterogeneity of concrete,to more realistically and reasonably reflect the destruction process of structures. 展开更多
关键词 reinforcement corrosion reinforced concrete column MESO-SCALE finite element analysis seismic behavior
下载PDF
Effects of Length and Location of Steel Corrosion on the Behavior and Load Capacity of Reinforced Concrete Columns 被引量:3
2
作者 王小惠 刘西拉 邓宝如 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第4期391-400,共10页
The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccen... The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccentric load test are presented in detail. Effects of the location of the partial length, the corrosion level within partial length and the asymmetrical deterioration of the concrete section on the mechanical behavior and load capacity of corroded RC columns are discussed. It is found that the mechanical behavior and load carrying capacity of corroded RC columns are simultaneously affected by the above mentioned factors. For the corroded RC columns with large eccentricity, a higher corrosion level in the tensile corroded length and a greater asymmetrical deterioration of the concrete section can result in less ductile behavior and larger load reduction of the column; while for the corroded RC columns with small eccentricity, the less ductile behavior and the larger load reduction of the column may result from the higher corrosion level in the compressive corroded length and the greater asymmetrical deterioration of the concrete 展开更多
关键词 reinforced concrete (RC) column CORROSION partial length mechanical behavior load capacity
原文传递
Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns
3
作者 李忠献 景萌 +1 位作者 郝永昶 康谷贻 《Transactions of Tianjin University》 EI CAS 2005年第6期412-416,共5页
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und... Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one. 展开更多
关键词 reinforced concrete frame seismic behavior split column short column model experiment
下载PDF
Experimental study on ductility improvement of reinforced concrete rectangular Columns retrofitted with a new fiber reinforced plastics method 被引量:1
4
作者 刘涛 冯伟 +1 位作者 张智梅 欧阳煜 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期7-14,共8页
Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation.... Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column. 展开更多
关键词 seismic behavior RETROFIT reinforced concrete (RC) rectangular column DUCTILITY fiber-reinforced plastics (FRP)
下载PDF
Seismic behavior of multiple reinforcement,high-strength concrete columns:experimental and theoretical analysis
5
作者 Xing Guohua Wang Haonan Osman E.Ozbulut 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期359-375,共17页
This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC co... This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns. 展开更多
关键词 high-strength concrete multiple reinforcement columns seismic behavior theoretical model cyclic loading test
下载PDF
Post-fire cyclic behavior of reinforced concrete shear walls 被引量:5
6
作者 刘桂荣 宋玉普 曲福来 《Journal of Central South University》 SCIE EI CAS 2010年第5期1103-1108,共6页
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc... The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone. 展开更多
关键词 shear wall reinforced concrete post-fire seismic behavior low cyclic loading
下载PDF
Seismic behavior of large-scale FRP–recycled aggregate concrete–steel columns with shear connectors 被引量:2
7
作者 Zeng Lan Li Lijuan +1 位作者 Yang Xianqian Liu Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期823-844,共22页
The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr... The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance. 展开更多
关键词 recycled AGGREGATE concrete (RAC) fi ber-reinforced polymer (FRP) FRP–RAC–steel column (FRSC) shear connector seismic behavior
下载PDF
Seismic Behaviour of Beam-Column Joints of Precast and Partial Steel Reinforced Concrete 被引量:1
8
作者 Wanpeng Cheng Licheng Wang +1 位作者 Yupu Song Jun Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期108-117,共10页
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate... A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints. 展开更多
关键词 preeast and partial steel reinforced concrete (PPSRC) beam-column joints low cyclic test hysteretic curve degradations of strength and stiffness DUCTILITY
下载PDF
Seismic Behavior of Specially Shaped Column Joints with X-Shaped Reinforcement 被引量:3
9
作者 戎贤 张健新 李艳艳 《Transactions of Tianjin University》 EI CAS 2013年第2期110-117,共8页
To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial co... To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints. 展开更多
关键词 specially shaped column JOINT low cyclic loading X-shaped reinforcement seismic behavior
下载PDF
Experimental study on seismic behavior of circular RC columns strengthened with pre-stressed FRP strips 被引量:1
10
作者 Zhou Changdong Lu Xilin +1 位作者 Li Hui Tian Teng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期625-642,共18页
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hy... Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved. 展开更多
关键词 experimental study circular reinforced concrete column PRE-STRESS fiber reinforced polymer axial loadratio seismic behavior active confinement
下载PDF
Test on mechanical behavior of SRC L-shaped columns under combined torsion and bending moment 被引量:1
11
作者 Chen Zongping Ning Fan +2 位作者 Chen Jianjia Liu Xiang Xu Dingyi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期161-177,共17页
Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,... Investigations of the seismic behavior of steel reinforced concrete L-shaped columns under constant axial compression and cycled bending-shear-torsion load were performed.Six specimens,which considered two parameters,i.e.,the moment ratio of torsion to bending(γ)and the aspect ratio(column length-to-depth ratio,φ),were prepared for the experiment.In this study,the failure process,torsion-displacement hysteresis curves,and flexure-displacement hysteresis curves were obtained.The failure characteristics,mechanical behavior of specimens such as the failure patterns,hysteresis curves,rigidity degradation,ductility and energy dissipation,are analyzed.The experimental research indicated that the major failures of the specimens were bending failure,bending-shear failure and bending-torsion failure as the moment ratio of torsion to bending(γ)increased.The torsion-displacement hysteresis curves were pinched in the middle,formed a slip platform,and the phenomenon of“load drop”occurred after the peak load.The bending-displacement hysteresis curves were plump,which showed that bending capacity of the specimen was better than its torsion capacity.Additionally,the energy dissipation of the specimen was dominated by torsion in the early stage and ultimately governed by the bending moment in the later phase.Test results also indicated that the displacement ductility coefficient and interstory rotation angle of the failure point were less than 3.0 and 1/50,respectively,which means the test specimen performance does not meet the requirement of the Chinese Code for Seismic Design of Buildings(GB 50011-2014)in this respect. 展开更多
关键词 compression-bending-shear-torsion combined action steel reinforced concrete(SRC) L-shaped columns seismic behavior
下载PDF
Seismic behavior of thin-walled circular and stiffened square steel tubed-reinforced-concrete columns 被引量:3
12
作者 GAN Dan ZHOU XuHong +1 位作者 LIU JiePeng LI Jiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第3期511-520,共10页
Steel tubed-reinforced-concrete(TRC) columns have been gradually used in the construction of high-rise buildings recently because of their high axial load-carrying capacities and excellent seismic behavior. Existing s... Steel tubed-reinforced-concrete(TRC) columns have been gradually used in the construction of high-rise buildings recently because of their high axial load-carrying capacities and excellent seismic behavior. Existing studies about their seismic behavior were focused on columns with relatively thick tubes, i.e., diameter-to-thickness/width-to-thickness(D/t) ratios were below 100,while little is known about thin-walled TRC columns, especially for square TRC columns. Considering the infilled concrete of square TRC columns is non-uniformly and non-effectively confined, accordingly, stiffened square TRC columns are usually adopted in practice. Thus, two thin-walled circular TRC columns(D/t=120) and two stiffened square ones with diagonal stiffeners in plastic hinge regions(D/t=106) were tested under a constant axial compression combined with cyclic lateral loading.Both the circular and stiffened square TRC columns had the same cross sectional area, tube thickness, reinforcing bar ratio and column height. Flexural failure occurred for all the four specimens. Test results showed the strengths of the stiffened square TRC columns were a little higher in comparison to their circular counterparts; the ductility and energy dissipation capacities were excellent for both the stiffened and circular TRC columns, indicating very good confinement was gained from the yielded steel tubes of the plastic hinge regions at the peak loads. And shear stresses(35–90 MPa) in the sheared plates showed their moderate contribution of carrying lateral loads. Finally, cross sectional capacity analysis results demonstrated the method for TRC columns is acceptable for the stiffened square TRC columns. 展开更多
关键词 STEEL tubed-reinforced-concrete column concrete filled STEEL tube composite column cyclic behavior STEEL JACKET
原文传递
Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns confined by carbon fiber reinforced plastics strips 被引量:1
13
作者 Hui MA Fangda LIU +2 位作者 Yanan WU Xin A Yanli ZHAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第7期817-842,共26页
To research the axial compression behavior of steel reinforced recycled concrete(SRRC)short columns confined by carbon fiber reinforced plastics(CFRP)strips,nine scaled specimens of SRRC short columns were fabricated ... To research the axial compression behavior of steel reinforced recycled concrete(SRRC)short columns confined by carbon fiber reinforced plastics(CFRP)strips,nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading.Subsequently,the failure process and failure modes were observed,and load-displacement curves as well as the strain of various materials were analyzed.The effects on the substitution percentage of recycled coarse aggregate(RCA),width of CFRP strips,spacing of CFRP strips and strength of recycled aggregate concrete(RAC)on the axial compression properties of columns were also analyzed in the experimental investigation.Furthermore,the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study.The results show that the first to reach the yield state was the profile steel in the columns,then the longitudinal rebars and stirrups yielded successively,and finally RAC was crushed as well as the CFRP strips was also broken.The replacement rate of RCA has little effect on the columns,and with the substitution rate of RCA from 0 to 100%,the bearing capacity of columns decreased by only 4.8%.Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns,the maximum increase was 10.5%or 11.4%,and the ductility of columns was significantly enhanced.Obviously,CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns.On this basis,considering the restraint effect of CFRP strips and the adverse effects of RCA,the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed. 展开更多
关键词 steel reinforced recycled concrete CFRP strips short columns axial compression behavior recycled aggregate concrete
原文传递
Experimental Study on the Compressive Behavior of CFRP/ECCs
14
作者 孙文彬 《Journal of Southwest Jiaotong University(English Edition)》 2010年第4期295-302,共8页
In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,2... In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,20,or 40 mm rounded corner radii at vertical edges. A 100 mm overlap in the direction of fibers was provided to ensure a proper bond. Uniaxial compression tests were conducted to investigate the compressive behaviors including the axial strength,stress-strain response,and ductility. It is evident that the CFRP tube confinement can improve the compressive behavior of concrete core,in terms of axial compressive strength or axial deformability. Based on the experimental results and some existing test database attained by other researchers,a design-oriented model is developed. The predictions of the model for CFRP/ECCs show good agreement with test results. 展开更多
关键词 Carbon fiber reinforced polymer (CFRP) concrete column Encasement CONFINEMENT Compressive behavior Enhancement parameter Design-oriented model
下载PDF
纤维织物增强高延性混凝土加固RC短柱抗剪性能试验研究 被引量:2
15
作者 邓明科 雷恒 +2 位作者 张雨顺 郭莉英 张伟 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期79-89,共11页
为研究纤维织物增强高延性混凝土(TR-HDC)加固钢筋混凝土短柱的抗剪性能,设计了6根钢筋混凝土柱,包括2个对比柱和4个TR-HDC加固柱.通过低周反复荷载试验,对比分析剪跨比、纤维织物层数对试件破坏形态、变形、承载力和耗能能力的影响.结... 为研究纤维织物增强高延性混凝土(TR-HDC)加固钢筋混凝土短柱的抗剪性能,设计了6根钢筋混凝土柱,包括2个对比柱和4个TR-HDC加固柱.通过低周反复荷载试验,对比分析剪跨比、纤维织物层数对试件破坏形态、变形、承载力和耗能能力的影响.结果表明:采用TR-HDC加固钢筋混凝土短柱,可显著提高其抗剪承载力;TR-HDC与原混凝土柱协同工作性能良好,加固后的混凝土柱的变形、承载力和耗能能力明显提高;增加纤维织物的层数对钢筋混凝土短柱的抗剪承载力提高幅度较小,但可大幅增强柱的耗能和变形能力;剪跨比较大时,更有利于发挥TR-HDC加固材料的力学性能.基于桁架-拱模型,提出TR-HDC加固钢筋混凝土短柱的抗剪承载力计算方法,计算结果较准确. 展开更多
关键词 低周反复荷载 纤维织物增强高延性混凝土 加固 RC短柱 抗剪承载力
下载PDF
圆钢管型钢再生混凝土组合柱水平承载力计算方法研究 被引量:1
16
作者 王磊 《建筑结构》 北大核心 2024年第8期20-26,共7页
通过对11个圆钢管型钢再生混凝土组合柱进行低周反复荷载试验,分析再生粗骨料取代率、型钢截面形式、轴压比、型钢配钢率及圆钢管壁厚参数对组合柱水平承载力的影响规律;观察了组合柱的破坏形态及特征,研究了圆钢管、型钢翼缘及腹板应... 通过对11个圆钢管型钢再生混凝土组合柱进行低周反复荷载试验,分析再生粗骨料取代率、型钢截面形式、轴压比、型钢配钢率及圆钢管壁厚参数对组合柱水平承载力的影响规律;观察了组合柱的破坏形态及特征,研究了圆钢管、型钢翼缘及腹板应变的发展规律,分析了组合柱的地震破坏特征。研究表明,在水平地震作用下组合柱发生典型的压弯塑性铰破坏。在此基础上,结合现有规范提出了基于叠加原理的圆钢管型钢再生混凝土组合柱水平承载力计算方法。计算结果表明,其水平承载力计算值与试验值吻合度较好,能较为准确地预测组合柱的水平承载力。 展开更多
关键词 型钢再生混凝土 圆钢管混凝土柱 破坏机理 低周反复荷载试验 水平承载力 计算方法
下载PDF
铅黏弹性阻尼器增强钢管约束钢筋混凝土柱节点抗震性能研究
17
作者 王秋维 景烜光 +1 位作者 史庆轩 李雪梅 《振动与冲击》 EI CSCD 北大核心 2024年第6期238-247,共10页
针对钢管约束钢筋混凝土(steel tubed reinforced concrete,STRC)柱节点抗震性能薄弱的现状,提出采用改良的铅黏弹性阻尼器进行增强。基于ABAQUS工作平台对铅黏弹性阻尼器试件建立有限元模型,将数值计算所得滞回和骨架曲线、耗能性能及... 针对钢管约束钢筋混凝土(steel tubed reinforced concrete,STRC)柱节点抗震性能薄弱的现状,提出采用改良的铅黏弹性阻尼器进行增强。基于ABAQUS工作平台对铅黏弹性阻尼器试件建立有限元模型,将数值计算所得滞回和骨架曲线、耗能性能及疲劳性能与试验结果进行对比,两者吻合较好。在此基础上探讨了铅芯直径、铅芯布置形式及复合黏弹性体厚度比值对铅黏弹性阻尼器力学性能的影响。结果表明:相较于扇形铅黏弹性阻尼器,改良后的四边形铅黏弹性阻尼器表现出更好的力学性能;随着铅芯直径的增大,阻尼器的耗能能力指标均得到大幅提高;建议铅芯个数取2个,铅芯面积与复合黏弹性层面积比值取6%~8%,复合黏弹性体厚度比值约为0.67。建立不同布置方案的铅黏弹性阻尼器增强STRC柱节点试件模型,对其破坏形态、滞回特性和箍筋应力进行对比分析,给出合理的布置方案,为实际工程提供参考。 展开更多
关键词 钢管约束钢筋混凝土(STRC)柱 铅黏弹性阻尼器 数值分析 抗震性能
下载PDF
矿渣基地聚物混凝土柱抗震性能研究
18
作者 卢海勇 胡翔 +5 位作者 毛宇光 苏捷 杜运兴 刘翼玮 李晃 史才军 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第3期475-489,共15页
为了研究不同强度等级的矿渣基地聚物混凝土柱的抗震性能,设计了3个普通混凝土悬臂柱试件和3个矿渣基地聚物混凝土悬臂柱试件,通过低周反复荷载试验,对地聚物混凝土柱的破坏模式、裂缝发展、滞回性能、位移延性、耗能性能、刚度与强度... 为了研究不同强度等级的矿渣基地聚物混凝土柱的抗震性能,设计了3个普通混凝土悬臂柱试件和3个矿渣基地聚物混凝土悬臂柱试件,通过低周反复荷载试验,对地聚物混凝土柱的破坏模式、裂缝发展、滞回性能、位移延性、耗能性能、刚度与强度退化和承载力等进行了评估,分析了混凝土种类、混凝土强度对试件抗震性能的影响。结果表明,在低周反复荷载作用下,与普通混凝土试件相比,矿渣基地聚物混凝土柱的抗震性能并未明显改善;提高地聚物混凝土强度会改变地聚物混凝土柱的破坏模式,从而对部分抗震性能(延性、耗能能力)产生不利的影响;验证表明《混凝土结构设计规范》(GB 50010—2010)中受弯承载力计算公式对于地聚物混凝土构件的计算结果偏小,拓展到工程应用中偏安全。 展开更多
关键词 结构抗震性能 结构抗震设计 地聚物混凝土柱 钢筋混凝土柱 低周反复荷载试验
下载PDF
基于静力试验的柱端铰型受控摇摆钢筋混凝土框架地震响应数值分析
19
作者 杨睿 鲁亮 谢广然 《工程力学》 EI CSCD 北大核心 2024年第S01期258-265,共8页
柱端铰型受控摇摆钢筋混凝土框架(CR-RCFC)是一种新型的可恢复功能结构,通过摇摆节点的构造来“弱化”结构整体抗侧刚度,从而达到减小地震响应的目的。CR-RCFC结构在振动台试验中呈现了在中震和大震作用下“主体构件免损伤,耗能构件易... 柱端铰型受控摇摆钢筋混凝土框架(CR-RCFC)是一种新型的可恢复功能结构,通过摇摆节点的构造来“弱化”结构整体抗侧刚度,从而达到减小地震响应的目的。CR-RCFC结构在振动台试验中呈现了在中震和大震作用下“主体构件免损伤,耗能构件易更换”的韧性抗震效果。振动台试验后进行低周反复静载试验得到拆除阻尼器后的CR-RCFC结构柱铰节点弯矩-转角滞回曲线和转动刚度等抗震性能参数。利用静力试验得到的结构抗震性能参数进行结构地震响应数值模拟,将数值模拟结果与振动台试验结果进行对比分析。对比分析结果表明:通过静力试验数据可以精确得到CR-RCFC结构节点抗震性能参数,根据该抗震性能参数进行的数值模拟结果与振动台试验结果吻合较好。 展开更多
关键词 柱端铰 受控摇摆钢筋混凝土框架 低周反复试验 节点力学模型 数值模拟
下载PDF
方钢管螺旋筋约束自密实高强混凝土柱抗震性能试验研究
20
作者 陈祥花 徐炜圣 +1 位作者 梁莹 陈宗平 《混凝土》 CAS 北大核心 2024年第5期67-74,81,共9页
为研究方钢管螺旋筋约束自密实高强混凝土柱的抗震性能,以轴压比、剪跨比、有无配制螺旋筋以及螺旋筋间距作为设计参数,进行了7个试件的低周反复加载试验,获取了各试件的滞回曲线以及应变分布。试验结果表明:试件破坏特征主要为方钢管... 为研究方钢管螺旋筋约束自密实高强混凝土柱的抗震性能,以轴压比、剪跨比、有无配制螺旋筋以及螺旋筋间距作为设计参数,进行了7个试件的低周反复加载试验,获取了各试件的滞回曲线以及应变分布。试验结果表明:试件破坏特征主要为方钢管柱脚区域出现明显鼓曲形成塑性铰区域;随轴压比的提高,试件抗剪承载力、环线刚度和耗能能力均有提升,剪跨比对试件抗震性能的影响规律不明显。配制螺旋筋对峰值承载力和刚度的影响较小,而对试件延性及耗能的提升明显,与无配筋试件相比试件延性平均提升了15.4%,耗能平均提升了114.9%。螺旋筋间距越密对试件抗震性能提升效果更优;适当增大轴压比,控制剪跨比在5以内以及增设螺旋筋对提升其承载能力和变形能力有积极作用。 展开更多
关键词 方钢管 螺旋筋 自密实高强混凝土 抗震性能
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部