期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
1
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
Performance of a Nonwoven Geotextile Reinforced Wall with Unsaturated Fine Backfill Soil
2
作者 Femando Henrique Martins Portelinha Benedito de Souza Bueno Jorge Gabriel Zomberg 《Journal of Civil Engineering and Architecture》 2013年第10期1253-1259,共7页
The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils ... The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils that are capable of developing of water pressures. However, the use of granular materials can expend the cost of the construction. As a result, local soils, granular or not, have been increasingly used. Unsaturated conditions of fine soils may result in convenient performance even using extensible reinforcements. This paper evaluates the performance of a full scale model of a nonwoven geotextile reinforced wall constructed with fine grained soil backfill. The unsaturated condition was maintained and matric suctions, displacements and reinforcement strains were monitored during the test. Results have shown that the unsaturated condition of the backfill allowed maximum reinforcement peak strain of 0.4 %. For the case of a wrap faced wall on a firm foundation the performance and good agreement between measured strains and factors of safety from limit equilibrium analyses have shown the maintenance of unsaturated conditions as an economical alternative to the use of high quality fill. 展开更多
关键词 reinforced soil wall nonwoven geotextile fine soil unsaturated soil.
下载PDF
Influence of variables related to soil weathering on the geomechanical performance of tropical soils 被引量:1
3
作者 Rodrigo Cesar Pierozan Gregorio Luís Silva Araújo +1 位作者 Ennio Marques Palmeira Celso Romanel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2423-2440,共18页
This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely... This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely weathered tropical soils with the influence of interparticle bonding.The sand-silt mixtures containing different relative proportions between uniform sand and lateritic soil were produced,and geomechanical soil characterization tests were performed.Based on the results,a transition from a primarily coarse-to a fine-grained prevailing soil structure was found to cause considerable impact on the geomechanical performance of these soils,as evidenced by design variables related to soil mineralogy and size distribution characteristics.Specifically,fines contents of both individual soil particles and soil aggregations were found to correlate with experimental results,while the relative proportion between sesquioxides(aluminum,and iron oxides),and silica,i.e.sesquioxide-silica ratios(SSR^(-1)),facilitated estimates concerning changes in geomechanical performance.Finally,the application of the sandsilt mixtures containing lateritic soil on soil walls reinforced with polymeric strips was also evaluated,further emphasizing the potential advantages of adopting variables related to soil weathering on design guidelines concerning tropical soils. 展开更多
关键词 Sesquioxides-silica ratio Tropical soils Sand-silt mixtures Lateritic soil reinforced soil walls
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部