For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.Firs...Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.First of all,the joint posterior distribution of all the terminals' positions is represented by factor graph.Because of the nonlinearity between the positions and time-of-arrival(TOA) measurement,messages cannot be obtained in closed forms by directly using the sum-product algorithm on factor graph.To this end,the Euclidean norm is approximated by Taylor expansion.Then,all the messages on the factor graph can be derived in Gaussian forms,which enables the terminals to transmit means and covariances.Finally,the impact of major error sources on the navigation performance are evaluated by Monte Carlo simulations,e.g.,range measurement noise,priors of position uncertainty and velocity noise.Results show that the proposed algorithm outperforms the extended Kalman filter and cooperative extended Kalman filter in both static and mobile scenarios of the JTIDS.展开更多
A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative naviga...A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative navigation,which can improve the autonomy of the satellite cluster. The ISL topology design problem is formulated as a multi-objective optimization problem where the energy consumption and the navigation performance are considered. Further,the relative navigation is performed in a distributed fashion,where each satellite in the cluster makes observations and communicates with its neighbors via the ISL locally such that the transmission consumption and the computational complexity for the navigation are reduced. The ISL topology optimization problem is solved via the NSGA-Ⅱ algorithm,and the consensus Kalman filter is used for the distributed relative navigation. The proposed approach is flexible to varying tasks,with satellites joining or leaving the cluster anytime,and is robust to the failure of an individual satellite. Numerical simulations are presented to verify the feasibility of the proposed approach.展开更多
Along with the increase of the number of failed satellites,plus space debris,year by year,it will take considerable manpower and resources if we rely just on ground surveillance and early warning.An alternative effect...Along with the increase of the number of failed satellites,plus space debris,year by year,it will take considerable manpower and resources if we rely just on ground surveillance and early warning.An alternative effective way would be to use autonomous long-range non-cooperative target relative navigation to solve this problem.For longrange non-cooperative targets,the stereo cameras or lidars that are commonly used would not be applicable.This paper studies a relative navigation method for long-range relative motion estimation of non-cooperative targets using only a monocular camera.Firstly,the paper provides the nonlinear relative orbit dynamics equations and then derives the discrete recursive form of the dynamics equations.An EKF filter is then designed to implement the relative navigation estimation.After that,the relative"locally weakly observability"theory for nonlinear systems is used to analyze the observability of monocular sequence images.The analysis results show that by relying only on monocular sequence images it has the possibility of deducing the relative navigation for long-range non-cooperative targets.Finally,numerical simulations show that the method given in this paper can achieve a complete estimation of the relative motion of longrange non-cooperative targets without conducting orbital maneuvers.展开更多
As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on t...As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on the lever arm effect of the sensor offset from the spacecraft center of mass is proposed.Firstly,the orbital propagation model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame.Secondly,the consensus constraint model for the relative orbit state is constructed by introducing the geometry constraint between the spacecraft,based on which the consensus unscented Kalman filter is designed.Thirdly,the observability analysis is done and the necessary conditions of the sensor offset to make the state observable are obtained.Lastly,digital simulations are conducted to verify the proposed algorithm,where the comparison to the unconstrained case is also done.The results show that the estimated error of the relative position converges very quickly,the location error is smaller than 10m under the condition of 10−3 rad level camera and 5m offset.展开更多
For angles-only relative navigation system only measures line-of-sight information,there are inherent problems in the ability to determine the range between Chaser and Target. Angles-only relative navigation is an att...For angles-only relative navigation system only measures line-of-sight information,there are inherent problems in the ability to determine the range between Chaser and Target. Angles-only relative navigation is an attractive alternative for inspecting or rendezvous with noncooperative target,if adequate accuracy can be achieved. Angles-only relative navigation model considering J2 perturbation is presented for tracking and rendezvous with noncooperative target in highly elliptical orbit. Impulsive out-of-plane maneuvers of the Chaser are used to improve the navigation accuracy. The first impulse burns in cross-track directions to change the orbit inclination of the Chaser. The second impulse burns after one orbit period to change the orbit of the Chaser back. The simulation results show that the relative navigation system without maneuvers can't correct the initial state errors,while impulsive out-ofplane maneuvers of the Chaser improves the navigation accuracy. Angles-only relative navigation with chaser vehicle maneuvers to improve observability is effective when the spacecrafts are in highly elliptical orbits.展开更多
A second-order divided difference filter (SDDF) is derived for integrating line of sight measurement from vision sensor with acceleration and angular rate measurements of the follower to estimate the precise relative ...A second-order divided difference filter (SDDF) is derived for integrating line of sight measurement from vision sensor with acceleration and angular rate measurements of the follower to estimate the precise relative position,velocity and attitude of two unmanned aerial vehicles (UAVs).The second-order divided difference filter which makes use of multidimensional interpolation formulations to approximate the nonlinear transformations could achieve more accurate estimation and faster convergence from inaccurate initial conditions than standard extended Kalman filter.The filter formulation is based on relative motion equations.The global attitude parameterization is given by quarternion,while a generalized three-dimensional attitude representation is used to define the local attitude error.Simulation results are shown to compare the performance of the second-order divided difference filter with a standard extended Kalman filter approach.展开更多
The present paper develops an approach of relative orbit determination for satellite formation flight.Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative navigatio...The present paper develops an approach of relative orbit determination for satellite formation flight.Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative navigation,and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit.The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design,in which the measurements were transformed to the inertial frame to avoid the linearization error of the observation equation.In addition,the situation of the coarse measurement period(only microwave radar measurements are available)existing was analyzed.The numerical simulation results verify the validity of the navigation approach,and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.展开更多
Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satelli...Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.展开更多
This paper considers the problem of angles-only relative navigation for autonomous rendezvous. Methods for determining degree of observability (DO0) and latent range information of orbital maneuver are proposed for ...This paper considers the problem of angles-only relative navigation for autonomous rendezvous. Methods for determining degree of observability (DO0) and latent range information of orbital maneuver are proposed for analyzing and enhancing the precision of relative position and velocity estimation. The equations of angles-only relative navigation are set forth on the con- dition that optical camera is the only viable sensor for relative measurement, and expressions for the DO0 of relative navigation are obtained by using the Newton iterative method. The latent range information of orbital maneuver is analyzed, which is employed to enhance the DOO of angles-only relative navigation. Simulation result shows that DOO is effective to describe the observability level of relative position and velocity, and the latent range information is useful in enhancing the DOO of the angles-only relative navigation.展开更多
Formation flight of multiple Unmanned Aerial Vehicles(UAVs)is expected to bring significant benefits to a wide range of applications.Accurate and reliable relative position information is a prerequisite to safely main...Formation flight of multiple Unmanned Aerial Vehicles(UAVs)is expected to bring significant benefits to a wide range of applications.Accurate and reliable relative position information is a prerequisite to safely maintain a fairly close distance between UAVs and to achieve inner-system collision avoidance.However,Global Navigation Satellite System(GNSS)measurements are vulnerable to erroneous signals in urban canyons,which could potentially lead to catastrophic consequences.Accordingly,on the basis of performing relative positioning with double differenced pseudoranges,this paper develops an integrity monitoring framework to improve navigation integrity(a measure of reliability)in urban environments.On the one hand,this framework includes a fault detection and exclusion scheme to protect against measurement faults.To accommodate urban scenarios,spatial dependence in the faults are taken into consideration by this scheme.On the other hand,relative protection level is rigorously derived to describe the probabilistic error bound of the navigation output.This indicator can be used to evaluate collision risk and to warn collision danger in real time.The proposed algorithms are validated by both simulations and flight experiments.Simulation results quantitatively reveal the sensitivity of navigation performance to receiver configurations and environmental conditions.And experimental results suggest high efficiency and effectiveness of the new integrity monitoring framework.展开更多
Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness.Given that there are several special advantages of space relative navigation using angles-...Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness.Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors,angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation.However,angles-only relative navigation is well-known for its range observability problem.To overcome this observability problem,many studies have been conducted over the past decades.In this study,we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements.The emphasis is on the observability problem and solutions to angles-only relative navigation,where the review of the solutions is categorized into four classes based on the intrinsic principle:complicated dynamics approach,multi-line of sight(multi-LOS)approach,sensor offset center-of-mass approach,and orbit maneuver approach.Then,the fight demonstration results of angles-only relative navigation in the two projects are briefly reviewed.Finally,conclusions of this study and recommendations for further research are presented.展开更多
This paper proposes a relative attitude and distance estimation algorithm based on pairwise range measurements between vehicles as well as inertial measurement of each platform. The solution of Wahba's Problem is int...This paper proposes a relative attitude and distance estimation algorithm based on pairwise range measurements between vehicles as well as inertial measurement of each platform. The solution of Wahba's Problem is introduced to compute the relative attitude between multi-platforms with the sampled pairwise ranges, in which the relative distance estimation is derived and the estimation error distributions are analyzed. An extended Kalman filter is designed to fuse the estimated attitude and distance with the inertial measurement of each platform. The relative poses between platforms are determined without any external aided measurement. To show this novelty, a real testbed is constructed by our research lab. And the experiment results are positive.展开更多
Rendezvous orbital dynamics and control (RODC) is a key technology for operating space rendezvous and docking missions. This paper surveys the studies on RODC. Firstly, the basic relative dynamics equation set is in...Rendezvous orbital dynamics and control (RODC) is a key technology for operating space rendezvous and docking missions. This paper surveys the studies on RODC. Firstly, the basic relative dynamics equation set is introduced and its improved versions are evaluated. Secondly, studies on rendezvous trajectory optimization are commented from three aspects: the linear rendez- vous, the nonlinear two-body rendezvous, and the perturbed and constrained rendezvous. Thirdly, studies on relative navigation are briefly reviewed, and then close-range control methods including automated control, manual control, and telecontrol are analyzed. Fourthly, advances in rendezvous trajectory safety and robust analysis are surveyed, and their applications in trajectory optimization are discussed. Finally, conclusions are drawn and prospects of studies on RODC are presented.展开更多
This paper considers the problem of optimal multi-objective trajectory design for autonomous rendezvous. Total velocity cost and relative state robustness of close-looped control are selected as the objective function...This paper considers the problem of optimal multi-objective trajectory design for autonomous rendezvous. Total velocity cost and relative state robustness of close-looped control are selected as the objective functions. Based on relative dynamics equations, the state equations and measurement equations for angles-only relative navigation between spacecraffs are set forth. According to the method of linear covariance analysis, the close-looped control covariance of the true relative state from the reference relative state is analyzed, and the objective functions of relative state robustness are formulated. Considering the total velocity cost and the relative state robustness, the multi-objective optimization algorithm of NSGA-II is employed to solve this multi-impulsive rendezvous problem. Lastly, the validity of the objective functions and the covariance results are demonstrated through 1 00 times Monte Carlo simulation.展开更多
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
基金supported by the National Natural Science Foundation of China(6120118161471037+1 种基金61571041)the Foundation for the Author of National Excellent Doctoral Dissertation of China(201445)
文摘Relative navigation is a key feature in the joint tactical information distribution system(JTIDS).A parametric message passing algorithm based on factor graph is proposed to perform relative navigation in JTIDS.First of all,the joint posterior distribution of all the terminals' positions is represented by factor graph.Because of the nonlinearity between the positions and time-of-arrival(TOA) measurement,messages cannot be obtained in closed forms by directly using the sum-product algorithm on factor graph.To this end,the Euclidean norm is approximated by Taylor expansion.Then,all the messages on the factor graph can be derived in Gaussian forms,which enables the terminals to transmit means and covariances.Finally,the impact of major error sources on the navigation performance are evaluated by Monte Carlo simulations,e.g.,range measurement noise,priors of position uncertainty and velocity noise.Results show that the proposed algorithm outperforms the extended Kalman filter and cooperative extended Kalman filter in both static and mobile scenarios of the JTIDS.
基金supported by the National Natural Science Foundation of China(No.61801213)。
文摘A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative navigation,which can improve the autonomy of the satellite cluster. The ISL topology design problem is formulated as a multi-objective optimization problem where the energy consumption and the navigation performance are considered. Further,the relative navigation is performed in a distributed fashion,where each satellite in the cluster makes observations and communicates with its neighbors via the ISL locally such that the transmission consumption and the computational complexity for the navigation are reduced. The ISL topology optimization problem is solved via the NSGA-Ⅱ algorithm,and the consensus Kalman filter is used for the distributed relative navigation. The proposed approach is flexible to varying tasks,with satellites joining or leaving the cluster anytime,and is robust to the failure of an individual satellite. Numerical simulations are presented to verify the feasibility of the proposed approach.
文摘Along with the increase of the number of failed satellites,plus space debris,year by year,it will take considerable manpower and resources if we rely just on ground surveillance and early warning.An alternative effective way would be to use autonomous long-range non-cooperative target relative navigation to solve this problem.For longrange non-cooperative targets,the stereo cameras or lidars that are commonly used would not be applicable.This paper studies a relative navigation method for long-range relative motion estimation of non-cooperative targets using only a monocular camera.Firstly,the paper provides the nonlinear relative orbit dynamics equations and then derives the discrete recursive form of the dynamics equations.An EKF filter is then designed to implement the relative navigation estimation.After that,the relative"locally weakly observability"theory for nonlinear systems is used to analyze the observability of monocular sequence images.The analysis results show that by relying only on monocular sequence images it has the possibility of deducing the relative navigation for long-range non-cooperative targets.Finally,numerical simulations show that the method given in this paper can achieve a complete estimation of the relative motion of longrange non-cooperative targets without conducting orbital maneuvers.
基金supported in part by the Natural Science Foundation of China(11802119)Science and Technology on Aerospace Flight Dynamics Laboratory(6142210200306)Foundation of Science and Technology on Space Intelligent Control Laboratory(6142208200303)。
文摘As to solve the collaborative relative navigation problem for near-circular orbiting small satellites in close-range under GNSS denied environment,a novel consensus constrained relative navigation algorithm based on the lever arm effect of the sensor offset from the spacecraft center of mass is proposed.Firstly,the orbital propagation model for the relative motion of multi-spacecraft is established based on Hill-Clohessy-Wiltshire dynamics and the line-of-sight measurement under sensor offset condition is modeled in Local Vertical Local Horizontal frame.Secondly,the consensus constraint model for the relative orbit state is constructed by introducing the geometry constraint between the spacecraft,based on which the consensus unscented Kalman filter is designed.Thirdly,the observability analysis is done and the necessary conditions of the sensor offset to make the state observable are obtained.Lastly,digital simulations are conducted to verify the proposed algorithm,where the comparison to the unconstrained case is also done.The results show that the estimated error of the relative position converges very quickly,the location error is smaller than 10m under the condition of 10−3 rad level camera and 5m offset.
文摘For angles-only relative navigation system only measures line-of-sight information,there are inherent problems in the ability to determine the range between Chaser and Target. Angles-only relative navigation is an attractive alternative for inspecting or rendezvous with noncooperative target,if adequate accuracy can be achieved. Angles-only relative navigation model considering J2 perturbation is presented for tracking and rendezvous with noncooperative target in highly elliptical orbit. Impulsive out-of-plane maneuvers of the Chaser are used to improve the navigation accuracy. The first impulse burns in cross-track directions to change the orbit inclination of the Chaser. The second impulse burns after one orbit period to change the orbit of the Chaser back. The simulation results show that the relative navigation system without maneuvers can't correct the initial state errors,while impulsive out-ofplane maneuvers of the Chaser improves the navigation accuracy. Angles-only relative navigation with chaser vehicle maneuvers to improve observability is effective when the spacecrafts are in highly elliptical orbits.
基金Sponsored by the Aerospace Technology Innovation Funding(Grant No. CASC0209)
文摘A second-order divided difference filter (SDDF) is derived for integrating line of sight measurement from vision sensor with acceleration and angular rate measurements of the follower to estimate the precise relative position,velocity and attitude of two unmanned aerial vehicles (UAVs).The second-order divided difference filter which makes use of multidimensional interpolation formulations to approximate the nonlinear transformations could achieve more accurate estimation and faster convergence from inaccurate initial conditions than standard extended Kalman filter.The filter formulation is based on relative motion equations.The global attitude parameterization is given by quarternion,while a generalized three-dimensional attitude representation is used to define the local attitude error.Simulation results are shown to compare the performance of the second-order divided difference filter with a standard extended Kalman filter approach.
基金Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)
文摘The present paper develops an approach of relative orbit determination for satellite formation flight.Inter-satellite measurements by the onboard devices of the satellite were chosen to perform this relative navigation,and the equations of relative motion expressed in the Earth Centered Inertial frame were used to eliminate the assumption of the circular reference orbit.The relative orbit estimation was achieved through a continuous-discrete converted measurement Kalman filter design,in which the measurements were transformed to the inertial frame to avoid the linearization error of the observation equation.In addition,the situation of the coarse measurement period(only microwave radar measurements are available)existing was analyzed.The numerical simulation results verify the validity of the navigation approach,and it has been proved that this approach can be applied to the formation with an elliptical reference orbit.
基金partially sponsored by the National 973 Project of China(2013CB733303)partially supported by the postgraduate independent exploration project of Central South University(2014zzts249)
文摘Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.
基金supported by the National Natural Science Foundation of China (Grant No. 10902101)
文摘This paper considers the problem of angles-only relative navigation for autonomous rendezvous. Methods for determining degree of observability (DO0) and latent range information of orbital maneuver are proposed for analyzing and enhancing the precision of relative position and velocity estimation. The equations of angles-only relative navigation are set forth on the con- dition that optical camera is the only viable sensor for relative measurement, and expressions for the DO0 of relative navigation are obtained by using the Newton iterative method. The latent range information of orbital maneuver is analyzed, which is employed to enhance the DOO of angles-only relative navigation. Simulation result shows that DOO is effective to describe the observability level of relative position and velocity, and the latent range information is useful in enhancing the DOO of the angles-only relative navigation.
基金This study was co-supported by SJTU Global Strategic Partnership Fund(2019 SJTU–UoT)Master Research Agreement between SJTU and Honeywell Technology Solutions China(HTSC).
文摘Formation flight of multiple Unmanned Aerial Vehicles(UAVs)is expected to bring significant benefits to a wide range of applications.Accurate and reliable relative position information is a prerequisite to safely maintain a fairly close distance between UAVs and to achieve inner-system collision avoidance.However,Global Navigation Satellite System(GNSS)measurements are vulnerable to erroneous signals in urban canyons,which could potentially lead to catastrophic consequences.Accordingly,on the basis of performing relative positioning with double differenced pseudoranges,this paper develops an integrity monitoring framework to improve navigation integrity(a measure of reliability)in urban environments.On the one hand,this framework includes a fault detection and exclusion scheme to protect against measurement faults.To accommodate urban scenarios,spatial dependence in the faults are taken into consideration by this scheme.On the other hand,relative protection level is rigorously derived to describe the probabilistic error bound of the navigation output.This indicator can be used to evaluate collision risk and to warn collision danger in real time.The proposed algorithms are validated by both simulations and flight experiments.Simulation results quantitatively reveal the sensitivity of navigation performance to receiver configurations and environmental conditions.And experimental results suggest high efficiency and effectiveness of the new integrity monitoring framework.
基金supported by the National Natural Science Foundation of China(12272168,11802119)Foundation of Science and Technology on Space Intelligent Control Laboratory(6142208200303,2021-JCJQ-LB-010-04).
文摘Relative navigation is a key enabling technology for space missions such as on-orbit servicing and space situational awareness.Given that there are several special advantages of space relative navigation using angles-only measurements from passive optical sensors,angles-only relative navigation is considered as one of the best potential approaches in the field of space relative navigation.However,angles-only relative navigation is well-known for its range observability problem.To overcome this observability problem,many studies have been conducted over the past decades.In this study,we present a comprehensive review of state-of-the-art space relative navigation based on angles-only measurements.The emphasis is on the observability problem and solutions to angles-only relative navigation,where the review of the solutions is categorized into four classes based on the intrinsic principle:complicated dynamics approach,multi-line of sight(multi-LOS)approach,sensor offset center-of-mass approach,and orbit maneuver approach.Then,the fight demonstration results of angles-only relative navigation in the two projects are briefly reviewed.Finally,conclusions of this study and recommendations for further research are presented.
基金This work was supported in part by the Major State Basic Research Development Program of China (No. 2014CB845303), the National Natural Science Foundation (NNSF) of China (No. 61527810) and the Science and Technology Planning Project of Guangdong, China (No. 2013B020200006).
文摘This paper proposes a relative attitude and distance estimation algorithm based on pairwise range measurements between vehicles as well as inertial measurement of each platform. The solution of Wahba's Problem is introduced to compute the relative attitude between multi-platforms with the sampled pairwise ranges, in which the relative distance estimation is derived and the estimation error distributions are analyzed. An extended Kalman filter is designed to fuse the estimated attitude and distance with the inertial measurement of each platform. The relative poses between platforms are determined without any external aided measurement. To show this novelty, a real testbed is constructed by our research lab. And the experiment results are positive.
基金co-supported by the National Natural Science Foundation of China (Nos.10902121 and 11222215)National Basic Research Program of China (No.2013CB733100)the Foundation for the Author of National Excellent Doctoral Dissertation of China (No.201171)
文摘Rendezvous orbital dynamics and control (RODC) is a key technology for operating space rendezvous and docking missions. This paper surveys the studies on RODC. Firstly, the basic relative dynamics equation set is introduced and its improved versions are evaluated. Secondly, studies on rendezvous trajectory optimization are commented from three aspects: the linear rendez- vous, the nonlinear two-body rendezvous, and the perturbed and constrained rendezvous. Thirdly, studies on relative navigation are briefly reviewed, and then close-range control methods including automated control, manual control, and telecontrol are analyzed. Fourthly, advances in rendezvous trajectory safety and robust analysis are surveyed, and their applications in trajectory optimization are discussed. Finally, conclusions are drawn and prospects of studies on RODC are presented.
基金supported by the National Natural Science Foundation of China (Grant No. 10902101)
文摘This paper considers the problem of optimal multi-objective trajectory design for autonomous rendezvous. Total velocity cost and relative state robustness of close-looped control are selected as the objective functions. Based on relative dynamics equations, the state equations and measurement equations for angles-only relative navigation between spacecraffs are set forth. According to the method of linear covariance analysis, the close-looped control covariance of the true relative state from the reference relative state is analyzed, and the objective functions of relative state robustness are formulated. Considering the total velocity cost and the relative state robustness, the multi-objective optimization algorithm of NSGA-II is employed to solve this multi-impulsive rendezvous problem. Lastly, the validity of the objective functions and the covariance results are demonstrated through 1 00 times Monte Carlo simulation.