Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
Abundance of C3 and C4 photosynthesis plants can be inferred relatively from stable carbon isotopic composi-tion of organic matter in soils. The samples from five sequences of the last glacial-interglacial loess-soil ...Abundance of C3 and C4 photosynthesis plants can be inferred relatively from stable carbon isotopic composi-tion of organic matter in soils. The samples from five sequences of the last glacial-interglacial loess-soil in the Chinese Loess Plateau have been measured for organic carbon isotopic ratios (d 13Corg). The organic carbon isotope data show that relative abundance (or biomass) of C4 plants was increased ca. 40% for each sampling site from the last glacial maximum (LGM) to Holocene optimum, and increased southeastward on the Loess Plateau during both periods of LGM and Holocene. Statistic analyses on the steady maximum d 13Corg values of Holocene soils and modern climatic data from the Loess Plateau and Inner Mongolia indicate that the C4 plant abundance increases with increasing temperature and decreasing precipitation. The C4 plant abundance is related much closer with mean April tem-perature and precipitation than annual. These results lead us to deduce following conclusions. First, temperature is the major factor for control on variations in C4 plant abundance in the Loess Plateau from the last glacial to interglacial. In the absence of favorable temperature condition, both of low moisture and low atmospheric CO2 concentration are insufficient to drive an expansion of the C4 plants in the plateau. Second, d 13Corg in the loess-paleosol sequences, as a proxy of the relative abundance of C4 plants in the Loess Plateau, could not be used as an indicator of changes in the summer monsoon intensity unless the tem-perature had changed without great amplitude. Since all C4 plants are grasses, finally, the increase of the C4 plants supports that forest has not been dominant in the ecosystem on the Loess Plateau during Holocene although precipitation and atmospheric CO2 were largely increased relative to those during LGM.展开更多
The distribution of C<sub>4</sub> plants and the C<sub>4</sub>/C<sub>3</sub> ratio along Northeast China transect (NECT) have been studied. A model to quantify their relation with...The distribution of C<sub>4</sub> plants and the C<sub>4</sub>/C<sub>3</sub> ratio along Northeast China transect (NECT) have been studied. A model to quantify their relation with environmental factors has been set up. The ratio of the number of C<sub>4</sub> plants to that of C<sub>3</sub> plants along NECT shows two low and two high trends from east to west, and their distribution is mainly decided by annual average temperature and precipitation.展开更多
Variations in carbon isotopic ratios (δ 13C) of C3 plants and distribution of C4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga, and the environmental effects on them were...Variations in carbon isotopic ratios (δ 13C) of C3 plants and distribution of C4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga, and the environmental effects on them were discussed. It is shown that plants with C4 photosynthetic pathway mainly occur at altitudes below 2100 m a.s.l., suggesting that the low summer temperature is responsible for the distributional pattern. In addition, δ 13C of C3 plants increases with elevation at the region above 2000 m a.s.l. with the characteristics of humid climate, and the increase rate in δ 13C for C3 plants is about 1.3‰ per kilometer. Temperature determines the altitudinal trend of δ 13C.展开更多
The analysis of carbon isotope in phytoliths from modern plants and surface soils in China shows that the values of carbon isotope are consistent with those from C3 and C4 plants, and the processes of photosynthesis o...The analysis of carbon isotope in phytoliths from modern plants and surface soils in China shows that the values of carbon isotope are consistent with those from C3 and C4 plants, and the processes of photosynthesis of the original plants can be clearly identified by carbon isotope in phytoliths. The value of carbon isotope varied from -23.8‰ to -28‰, with the maximum distributed in the latitude zone from 34°N to 40°N in North China and East China areas, and the minimum in the Northeast China and South China regions. The values of carbon of phytoliths tend to increase from low to high and then reduce to low value again as the latitude increases. In the same latitude zone, the carbon isotope in phytoliths from grassland soil under the trees is obviously lower than that from grassland soil without any trees with the difference of 1‰ - 2‰.展开更多
The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by...The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aoxla Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection. Although the AOX pathway contributes to PSII photoprotection in C3 leaves treated with high light, this contribution was observed to disappear when photorespiration was suppressed. Disruption or inhibition of the AOX pathway significantly decreased the photorespiration in C3 leaves. Moreover, the AOX pathway did not respond to high light and contributed little to PSII photoprotection in C4 leaves possessing a highly active Mal/OAA shuttle but with little photorespiration. These results demonstrate that the AOX pathway contributes to PSII photoprotection in C3 plants by maintaining photo- respiration to detoxify glycolate and via the indirect export of excess reducing equivalents from chloro-plasts by the MaI/OAA shuttle. This new action model explains why the AOX pathway does not contribute to PSII photoprotection in C4 plants.展开更多
C3 plant Reaumuria soongorica and C4 plant Salsola passerina are super xerophytes and coexist in a mixed community in either isolated or associated growth, and interspecific facilitation occurs in associated growth. I...C3 plant Reaumuria soongorica and C4 plant Salsola passerina are super xerophytes and coexist in a mixed community in either isolated or associated growth, and interspecific facilitation occurs in associated growth. In the present study, the root traits including root distribution, root length(RL), root surface area(RSA), root weight(RW) and specific root length(SRL) of both species in two growth forms were investigated to clarify their response to facilitation in associated growth. Six isolated plants of each species, as well as six associated plants similar in size and development were selected during the plant growing season, and their roots were excavated at 0–10, 10–20, 20–30, 30–40 and 40–50 cm soil depths at the end of the growing season. All the roots of each plant were separated into the two categories of fine roots(2 mm diameter) and coarse roots(≥2 mm diameter). Root traits such as RL and RSA in the fine and coarse roots were obtained by the root analyzing system WinRHIZO. Most of the coarse roots in R. soongorica and S. passerina were distributed in the top 10 cm of the soil in both growth forms, whereas the fine roots of the two plant species were found mainly in the 10–20 and 20–30 cm soil depths in isolated growth, respectively. However, the fine roots of both species were mostly overlapped in 10–20 cm soil depth in associated growth. The root/canopy ratios of both species reduced, whereas the ratios of their fine roots to coarse roots in RL increased, and both species had an increased SRL in the fine roots in associated growth. In addition, there was the increase in RL of fine roots and content of root N for S. passerina in associated growth. Taken together, the root growth of S. passerina was facilitated for water and nutrient exploration under the interaction of the overlapped roots in both species in associated growth, and higher SRL allowed both species to more effectively adapt to the infertile soil in the desert ecosystem.展开更多
To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we exa...To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we examine the effect of the natural fires on the MS signal of both plants and modern soils and in particular the MS difference between C3 and C4 plant ashes and their influence on magnetic susceptibility. We also proved the influence of the different floral root systems on the MS signal of modern soils. We find that the C3 and C4 plants are different in their ability to enhance MS signal of modern soils. Increased MS signal of modern soils by C4 plants was much greater than that by C3 plants.展开更多
It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems, deteriorating soil quality and changing climate. Its management remains a complex enigma for the scientifi...It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems, deteriorating soil quality and changing climate. Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions. This article reviews the management aspects of soil C dynamics in light of recent advances, particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate. Globally, drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability, resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions, degraded soil quality, and increased atmospheric CO2 concentrations, leading to climate warming. Predicted climate warming is proposed to enhance SOC decomposition, which may further increase soil N availability, leading to higher soil CO2 effiux. However, a literature survey revealed that soil may also act as a potential C sink, if we could manage soil inorganic N pools and link microbial processes properly. Studies also indicated that the relative, rather than the absolute, availability of inorganic N pools might be of key importance under changing climate, as these N pools are variably affected by moisture-temperature interactions, and they have variable impacts on SOC turnover. Therefore, multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.展开更多
It has long been recognized that plant invasions may alter carbon (C) and nitrogen (N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effe...It has long been recognized that plant invasions may alter carbon (C) and nitrogen (N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effects caused by the invasion of a noxious exotic plant, Kalanchoe daigrernontiana (Crassulaceae), on C and N mineralization and enzymatic and microbial activities in the soil of a semiarid locality in Venezuela. We compared soil parameters associated with these processes (C and N mineralization time and the cumulative values, fluorescein diacetate hydrolytic activity, and activities of dehydrogenase, β-glucosidase, glucosaminidase, and urease) between invaded and adjacent non-invaded sites. In addition, correlations among these parameters and the soil physical-chemical properties were also examined to determine if a positive feedback exists between nutrient availability and K. daigremontiana invasion. Overall, our results showed that C mineralization and transformation of organic compounds to NH4^+ were favored at sites colonized by K. daigrernontiana. With this species, we found the highest cumulative amounts of NH4^+-N and C and the lowest mineralization time. These results could be explained by higher activities of urease and glueosaminidase in soils under the influence of K. daigremontiana. In addition, higher amounts of organic matter and moisture content in invaded soils might favor C and N mineralization. In conclusion, invasion of Neotropical semiarid zones by K. daigrernontiana may influence the chemical and biological properties of the soils covered by this species, increasing nutrient bioavailability, which, in time, can facilitate the invasion process.展开更多
The nature and dynamics of climate change in central Asia since the late Pleistocene are controversial. Moreover,most of the published studies focus mainly on the evolution of moisture conditions, and there have been ...The nature and dynamics of climate change in central Asia since the late Pleistocene are controversial. Moreover,most of the published studies focus mainly on the evolution of moisture conditions, and there have been few attempts to address changes in seasonality. In this study, records of δ^(13)C_(org), TOC, TN, C/N and grain size were obtained from lacustrine sediments at Yili Basin, Xinjiang, NW China. Our aim was to reconstruct the trend in seasonality of precipitation from the last glaciation to the Holocene. The organic matter content of the sediments is derived predominantly from terrestrial plants. The δ^(13)C_(org)values vary from-19.4‰ to-24.8‰, indicating that the vegetation was dominated by C_3 plants. Winter-spring precipitation is identified as the factor determining the relative proportions of C_3 and C_4 plants in the region. A negative trend in δ^(13)C_(org)corresponding to an increase in the relative abundance of C_3 plants indicate a trend of increasing winter-spring precipitation from the last glaciation to the Holocene. The increased incidence of wintertime storms in the interior of Asia is suggested to result in the increase of winterspring precipitation in the Holocene.展开更多
Carbon isotopic composition of pedogenic carbonate can be used to estimate the proportion of C4 and C3 plants. Here we present carbon isotopic data of carbonate in a red earth section at Xifeng, central Loess Plateau....Carbon isotopic composition of pedogenic carbonate can be used to estimate the proportion of C4 and C3 plants. Here we present carbon isotopic data of carbonate in a red earth section at Xifeng, central Loess Plateau. Results show that C4 vegetation increased in -4.4 Ma B.P., stabilized between 4.0 and 3.0 Ma B.P. The character and timing of C4 expansion on the Loess Plateau are similar, but different with other localities, e.g. Pakistan and Africa, implying that regional climate changes were main factors driving the expansion of C4 plants. This event is comparable in timing with increased aridity evidenced by Xifeng grain size and North Pacific eolian dust records. Therefore we argue that the Pliocene expansion of C4 plants in northern China might have been caused by the increased aridity, which in turn might be related to rapid uplift of the Tibetan Plateau.展开更多
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
文摘Abundance of C3 and C4 photosynthesis plants can be inferred relatively from stable carbon isotopic composi-tion of organic matter in soils. The samples from five sequences of the last glacial-interglacial loess-soil in the Chinese Loess Plateau have been measured for organic carbon isotopic ratios (d 13Corg). The organic carbon isotope data show that relative abundance (or biomass) of C4 plants was increased ca. 40% for each sampling site from the last glacial maximum (LGM) to Holocene optimum, and increased southeastward on the Loess Plateau during both periods of LGM and Holocene. Statistic analyses on the steady maximum d 13Corg values of Holocene soils and modern climatic data from the Loess Plateau and Inner Mongolia indicate that the C4 plant abundance increases with increasing temperature and decreasing precipitation. The C4 plant abundance is related much closer with mean April tem-perature and precipitation than annual. These results lead us to deduce following conclusions. First, temperature is the major factor for control on variations in C4 plant abundance in the Loess Plateau from the last glacial to interglacial. In the absence of favorable temperature condition, both of low moisture and low atmospheric CO2 concentration are insufficient to drive an expansion of the C4 plants in the plateau. Second, d 13Corg in the loess-paleosol sequences, as a proxy of the relative abundance of C4 plants in the Loess Plateau, could not be used as an indicator of changes in the summer monsoon intensity unless the tem-perature had changed without great amplitude. Since all C4 plants are grasses, finally, the increase of the C4 plants supports that forest has not been dominant in the ecosystem on the Loess Plateau during Holocene although precipitation and atmospheric CO2 were largely increased relative to those during LGM.
文摘The distribution of C<sub>4</sub> plants and the C<sub>4</sub>/C<sub>3</sub> ratio along Northeast China transect (NECT) have been studied. A model to quantify their relation with environmental factors has been set up. The ratio of the number of C<sub>4</sub> plants to that of C<sub>3</sub> plants along NECT shows two low and two high trends from east to west, and their distribution is mainly decided by annual average temperature and precipitation.
基金Supported by National Natural Science Foundation of China (Grant No. 40673017)
文摘Variations in carbon isotopic ratios (δ 13C) of C3 plants and distribution of C4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga, and the environmental effects on them were discussed. It is shown that plants with C4 photosynthetic pathway mainly occur at altitudes below 2100 m a.s.l., suggesting that the low summer temperature is responsible for the distributional pattern. In addition, δ 13C of C3 plants increases with elevation at the region above 2000 m a.s.l. with the characteristics of humid climate, and the increase rate in δ 13C for C3 plants is about 1.3‰ per kilometer. Temperature determines the altitudinal trend of δ 13C.
文摘The analysis of carbon isotope in phytoliths from modern plants and surface soils in China shows that the values of carbon isotope are consistent with those from C3 and C4 plants, and the processes of photosynthesis of the original plants can be clearly identified by carbon isotope in phytoliths. The value of carbon isotope varied from -23.8‰ to -28‰, with the maximum distributed in the latitude zone from 34°N to 40°N in North China and East China areas, and the minimum in the Northeast China and South China regions. The values of carbon of phytoliths tend to increase from low to high and then reduce to low value again as the latitude increases. In the same latitude zone, the carbon isotope in phytoliths from grassland soil under the trees is obviously lower than that from grassland soil without any trees with the difference of 1‰ - 2‰.
文摘The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aoxla Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection. Although the AOX pathway contributes to PSII photoprotection in C3 leaves treated with high light, this contribution was observed to disappear when photorespiration was suppressed. Disruption or inhibition of the AOX pathway significantly decreased the photorespiration in C3 leaves. Moreover, the AOX pathway did not respond to high light and contributed little to PSII photoprotection in C4 leaves possessing a highly active Mal/OAA shuttle but with little photorespiration. These results demonstrate that the AOX pathway contributes to PSII photoprotection in C3 plants by maintaining photo- respiration to detoxify glycolate and via the indirect export of excess reducing equivalents from chloro-plasts by the MaI/OAA shuttle. This new action model explains why the AOX pathway does not contribute to PSII photoprotection in C4 plants.
基金support by the National Natural Science Foundation of China (91025026, 31070359)the National Basic Research Program of China (Y31JA61001)
文摘C3 plant Reaumuria soongorica and C4 plant Salsola passerina are super xerophytes and coexist in a mixed community in either isolated or associated growth, and interspecific facilitation occurs in associated growth. In the present study, the root traits including root distribution, root length(RL), root surface area(RSA), root weight(RW) and specific root length(SRL) of both species in two growth forms were investigated to clarify their response to facilitation in associated growth. Six isolated plants of each species, as well as six associated plants similar in size and development were selected during the plant growing season, and their roots were excavated at 0–10, 10–20, 20–30, 30–40 and 40–50 cm soil depths at the end of the growing season. All the roots of each plant were separated into the two categories of fine roots(2 mm diameter) and coarse roots(≥2 mm diameter). Root traits such as RL and RSA in the fine and coarse roots were obtained by the root analyzing system WinRHIZO. Most of the coarse roots in R. soongorica and S. passerina were distributed in the top 10 cm of the soil in both growth forms, whereas the fine roots of the two plant species were found mainly in the 10–20 and 20–30 cm soil depths in isolated growth, respectively. However, the fine roots of both species were mostly overlapped in 10–20 cm soil depth in associated growth. The root/canopy ratios of both species reduced, whereas the ratios of their fine roots to coarse roots in RL increased, and both species had an increased SRL in the fine roots in associated growth. In addition, there was the increase in RL of fine roots and content of root N for S. passerina in associated growth. Taken together, the root growth of S. passerina was facilitated for water and nutrient exploration under the interaction of the overlapped roots in both species in associated growth, and higher SRL allowed both species to more effectively adapt to the infertile soil in the desert ecosystem.
基金the Nation Natural Science Foundation of China (Grant Nos.400242002 and 49894170-04), project on Formation and Evolution of Tibetan Plateau with its Environment and Resource Effect (Grant No. 1998040800) and Chinese Academy of Sciences (CAS KZ951-A1-40
文摘To understand the origin of the ultrafine pedogenic components responsible for the magnetic susceptibility (MS) enhancement remains a major challenging problem in linking magnetic signal with paleoclimate. Here we examine the effect of the natural fires on the MS signal of both plants and modern soils and in particular the MS difference between C3 and C4 plant ashes and their influence on magnetic susceptibility. We also proved the influence of the different floral root systems on the MS signal of modern soils. We find that the C3 and C4 plants are different in their ability to enhance MS signal of modern soils. Increased MS signal of modern soils by C4 plants was much greater than that by C3 plants.
文摘It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems, deteriorating soil quality and changing climate. Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions. This article reviews the management aspects of soil C dynamics in light of recent advances, particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate. Globally, drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability, resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions, degraded soil quality, and increased atmospheric CO2 concentrations, leading to climate warming. Predicted climate warming is proposed to enhance SOC decomposition, which may further increase soil N availability, leading to higher soil CO2 effiux. However, a literature survey revealed that soil may also act as a potential C sink, if we could manage soil inorganic N pools and link microbial processes properly. Studies also indicated that the relative, rather than the absolute, availability of inorganic N pools might be of key importance under changing climate, as these N pools are variably affected by moisture-temperature interactions, and they have variable impacts on SOC turnover. Therefore, multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.
基金supported by the Venezuelan Institute for Scientific Research to the first author
文摘It has long been recognized that plant invasions may alter carbon (C) and nitrogen (N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effects caused by the invasion of a noxious exotic plant, Kalanchoe daigrernontiana (Crassulaceae), on C and N mineralization and enzymatic and microbial activities in the soil of a semiarid locality in Venezuela. We compared soil parameters associated with these processes (C and N mineralization time and the cumulative values, fluorescein diacetate hydrolytic activity, and activities of dehydrogenase, β-glucosidase, glucosaminidase, and urease) between invaded and adjacent non-invaded sites. In addition, correlations among these parameters and the soil physical-chemical properties were also examined to determine if a positive feedback exists between nutrient availability and K. daigremontiana invasion. Overall, our results showed that C mineralization and transformation of organic compounds to NH4^+ were favored at sites colonized by K. daigrernontiana. With this species, we found the highest cumulative amounts of NH4^+-N and C and the lowest mineralization time. These results could be explained by higher activities of urease and glueosaminidase in soils under the influence of K. daigremontiana. In addition, higher amounts of organic matter and moisture content in invaded soils might favor C and N mineralization. In conclusion, invasion of Neotropical semiarid zones by K. daigrernontiana may influence the chemical and biological properties of the soils covered by this species, increasing nutrient bioavailability, which, in time, can facilitate the invasion process.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000)the National Natural Science Foundation of China (Grant Nos. 41772371, 41572161 & 41730319)+2 种基金the National Basic Research Program of China (Grant No. 2015CB953803)the Youth Innovation Promotion Association CASthe Australian Nuclear Science and Technology Organization
文摘The nature and dynamics of climate change in central Asia since the late Pleistocene are controversial. Moreover,most of the published studies focus mainly on the evolution of moisture conditions, and there have been few attempts to address changes in seasonality. In this study, records of δ^(13)C_(org), TOC, TN, C/N and grain size were obtained from lacustrine sediments at Yili Basin, Xinjiang, NW China. Our aim was to reconstruct the trend in seasonality of precipitation from the last glaciation to the Holocene. The organic matter content of the sediments is derived predominantly from terrestrial plants. The δ^(13)C_(org)values vary from-19.4‰ to-24.8‰, indicating that the vegetation was dominated by C_3 plants. Winter-spring precipitation is identified as the factor determining the relative proportions of C_3 and C_4 plants in the region. A negative trend in δ^(13)C_(org)corresponding to an increase in the relative abundance of C_3 plants indicate a trend of increasing winter-spring precipitation from the last glaciation to the Holocene. The increased incidence of wintertime storms in the interior of Asia is suggested to result in the increase of winterspring precipitation in the Holocene.
基金Thiswork was supported by the National Natural Science Foundation of China (Grant Nos. 49702029 and 49894170) the National Project for Basic Research on Tibetan Plateau (Grant No. G1998040800).
文摘Carbon isotopic composition of pedogenic carbonate can be used to estimate the proportion of C4 and C3 plants. Here we present carbon isotopic data of carbonate in a red earth section at Xifeng, central Loess Plateau. Results show that C4 vegetation increased in -4.4 Ma B.P., stabilized between 4.0 and 3.0 Ma B.P. The character and timing of C4 expansion on the Loess Plateau are similar, but different with other localities, e.g. Pakistan and Africa, implying that regional climate changes were main factors driving the expansion of C4 plants. This event is comparable in timing with increased aridity evidenced by Xifeng grain size and North Pacific eolian dust records. Therefore we argue that the Pliocene expansion of C4 plants in northern China might have been caused by the increased aridity, which in turn might be related to rapid uplift of the Tibetan Plateau.