The lattice parameter and magnetocaloric properties of three samples of LaFe11.2Co0.7Si1.1-xGax with x = 0, 0.03 and 0.05 have been investigated by X-ray powder diffraction and magnetization measurements. The lattice ...The lattice parameter and magnetocaloric properties of three samples of LaFe11.2Co0.7Si1.1-xGax with x = 0, 0.03 and 0.05 have been investigated by X-ray powder diffraction and magnetization measurements. The lattice parameter increases slightly and the Curie temperature increases somewhat with increasing gallium content. However, a small amount of Ga doping into the sample decreases the magnetic entropy change of the sample. All the samples remain in the first-order magnetic phase transition. The most striking effect of the Ga doping is that the cooling capacity in the samples increases significantly. The maximum magnetic entropy change, ASM and the cooling capacity of the sample LaFe11.2Co0.7Si1.07Ga0.03 are 11.9 J·kg^-1·K^-1 and 254.8 J·kg^-1, respectively.展开更多
A series of alloys (Gd1-xHox)5Si4(x=0, 0.05, 0.15, 0.25) have been prepared. Adiabatic temperature changes of(Gd1-xHox)5Si4 alloys is exactly investigated by a control and analysis system for ΔH=1.4 T, and the measur...A series of alloys (Gd1-xHox)5Si4(x=0, 0.05, 0.15, 0.25) have been prepared. Adiabatic temperature changes of(Gd1-xHox)5Si4 alloys is exactly investigated by a control and analysis system for ΔH=1.4 T, and the measurement results are trustworthy. Curie temperatures of these alloys are tunable in a wide temperature region, and decrease almost linearly with the increasing of Ho content. Magnetic entropy changes in the (Gd1-xHox)Si4 compounds are about 2.35 J/(kg·K) when magnetic field change are 0~1.4 T. The adiabatic temperatures of these alloys at Curie Points are larger than 1 K about 40% of that of Gd in a field change 0~1.4 T, and the curves of ΔTad are as wide as that of Gd. The relative cooling power RCP(S) or RCP(T) of these alloys are about 0.5~0.7 J·cm-3 and 42~50 K2 on the field 0~1.4 T, about 58% and 55% of that of Gd respectively. These alloys are potential magnetic refrigerants working in a refrigerator at room temperatures.展开更多
Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was ad...Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...展开更多
We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with pa...We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.展开更多
In this work,a phenomenological model is applied to describe the magnetocaloric effect for the La_(0.75)Ca_(0.25)MnO_(3)system near a second-order phase transition from a ferromagnetic to a paramagnetic state.Based on...In this work,a phenomenological model is applied to describe the magnetocaloric effect for the La_(0.75)Ca_(0.25)MnO_(3)system near a second-order phase transition from a ferromagnetic to a paramagnetic state.Based on this model,it can predict the values of the magnetocaloric properties from calculation of magnetization as a function of temperature under different external magnetic fields.The magnetic entropy change reaches a peak of about 5.39 J/(kg·K)at 257 K upon 4 T applied field variation.TheΔSM distribution is much more uniform than that of gadolinium,which is desirable for an Ericson-cycle magnetic refrigerator.展开更多
A systematic investigation on the structural, magnetic and magnetocaloric properties of Pr_(0.6)Sr_(0.4-x)Ag_xMnO_3(x=0.05 and 0.1) manganites was reported. Rietveld refinements of the X-ray diffraction patterns...A systematic investigation on the structural, magnetic and magnetocaloric properties of Pr_(0.6)Sr_(0.4-x)Ag_xMnO_3(x=0.05 and 0.1) manganites was reported. Rietveld refinements of the X-ray diffraction patterns confirmed that all samples were single phase and crystallized in the orthorhombic structure with Pnma space group. Magnetic measurements in a magnetic applied field of 0.01T revealed that the ferromagnetic-paramagnetic transition temperature T_C decreased from about 293 to 290 K with increasing silver content from x=0.05 to 0.1. The reported magnetocaloric entropy change and relative cooling power for both samples were considerably remarkable with a △S_(max) value of 1.9 J/(kg·K)and maximum RCP values of 100 J/kg, under a magnetic field change(?μ0H) equal to 1.8T. The analysis of the universal curves gave an evidence of a second order magnetic transition for the studied samples. The magnetic field influence on both the magnetic entropy change and the relative cooling power was also studied and discussed.展开更多
The height of total entropy(S)for a magnetic refrigerant material is essentially concerned with the magnetic and structural transitions.However,the participation of such transitions in layered materials is not well un...The height of total entropy(S)for a magnetic refrigerant material is essentially concerned with the magnetic and structural transitions.However,the participation of such transitions in layered materials is not well understood.Therefore,the purpose of this work is to investigate the interplay between double layer lattice with their single perovskite counterpart,to achieve optimal magnetocaloric performance.A series of self-doped Pr_(1.4+x)Sr_(1.6-x)Mn_(2)O_(7)(0.0≤x≤0.5)Ruddlesden-Popper(R-P)perovskite have been prepared through the solid-state sintering method.With increasing the Pr-stoichiometry,the lattice faults have increased and the double layer lattice dramatically disintegrates into single perovskite structure.Due to the reduction of bilayer R-P phase into single perovskite the spin crossover occurs from weak bilayer(T=304 K)interactions towards the strong three-dimensional(T=308 K)interactions respectively.This series consistently develops thermomagnetic irreversibility in zero-field cooled(ZFC)-field cooled(FC)magnetization,which is indicative of a spin-glass state.The glassy nature has been ascribed collectively to the lattice strain produced because of dislocations and to an antiferromagnetic phase segregated at the surface.The maximum value of temperature average entropy change(TEC)and adiabatic temperature(ΔT)has enhanced nearly by 4 folds from 0.53 J kg^(-1)K^(-1),0.59 K(for x=0.0)up to 1.85 J kg^(-1)K^(-1),10 K(for x=0.5)at 2.5 T,respectively.Additionally,the room temperature relative cooling power has improved from 26.94 J/kg up to 77.84 J/kg with an applied field of 2.5 T.Our findings in this work suggest that the controlled reduction of double layer lattice into single perovskite and/or existence of both phases simultaneously in bilayer R-P manganites may be very effective in obtaining the desirable characteristics of magnetocaloric effects.展开更多
LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)Hxalloys were prepared by hydrogenation.Samples were annealed at 1343Kfor30-90 hto form the NaZn13 phase.La-rich andα-Fe secondary phases were also detected.Saturated hydr...LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)Hxalloys were prepared by hydrogenation.Samples were annealed at 1343Kfor30-90 hto form the NaZn13 phase.La-rich andα-Fe secondary phases were also detected.Saturated hydrogenation at 553 Kand 0.15 MPa of H_2 pressure for 5hwas employed to improve the Curie temperature of the alloys to 279 K.The maximum magnetic entropy change,relative cooling power,and adiabatic temperature change of LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x annealed at 1343 Kfor 90hafter hydrogen absorption are 6.38J/(kg·K)(magnetic changesμ0ΔH =1.65T),100.1J/kg(μ0ΔH =1.65T),and 2.2 K(μ0ΔH =1.48T),respectively.Although the maximum magnetic entropy change of the LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys is lower than those of similar alloys with high purity raw materials,the relative cooling power is nearly the same.The effect of impurities of the raw materials used was also discussed.It is assumed that the impurity of 0.2wt.% Al is responsible for the reduced entropy change of the resulted alloys.The LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys prepared by this method could be a low cost alternative material for room temperature magnetic cooling applications.展开更多
基金the Opening Foun-dation of Guangxi Key Laboratory for the Advance Materi-als and New Preparation Technology
文摘The lattice parameter and magnetocaloric properties of three samples of LaFe11.2Co0.7Si1.1-xGax with x = 0, 0.03 and 0.05 have been investigated by X-ray powder diffraction and magnetization measurements. The lattice parameter increases slightly and the Curie temperature increases somewhat with increasing gallium content. However, a small amount of Ga doping into the sample decreases the magnetic entropy change of the sample. All the samples remain in the first-order magnetic phase transition. The most striking effect of the Ga doping is that the cooling capacity in the samples increases significantly. The maximum magnetic entropy change, ASM and the cooling capacity of the sample LaFe11.2Co0.7Si1.07Ga0.03 are 11.9 J·kg^-1·K^-1 and 254.8 J·kg^-1, respectively.
文摘A series of alloys (Gd1-xHox)5Si4(x=0, 0.05, 0.15, 0.25) have been prepared. Adiabatic temperature changes of(Gd1-xHox)5Si4 alloys is exactly investigated by a control and analysis system for ΔH=1.4 T, and the measurement results are trustworthy. Curie temperatures of these alloys are tunable in a wide temperature region, and decrease almost linearly with the increasing of Ho content. Magnetic entropy changes in the (Gd1-xHox)Si4 compounds are about 2.35 J/(kg·K) when magnetic field change are 0~1.4 T. The adiabatic temperatures of these alloys at Curie Points are larger than 1 K about 40% of that of Gd in a field change 0~1.4 T, and the curves of ΔTad are as wide as that of Gd. The relative cooling power RCP(S) or RCP(T) of these alloys are about 0.5~0.7 J·cm-3 and 42~50 K2 on the field 0~1.4 T, about 58% and 55% of that of Gd respectively. These alloys are potential magnetic refrigerants working in a refrigerator at room temperatures.
基金Project supported by the National Basic Research Program of China (2006CB601101)the National High Technology Research and Development Program of China (2007AA03Z440)the National Natural Science Foundation of China (50731007)
文摘Magnetic properties and structures in La1-zPrz(Fe0.895–xCoxSi0.105)13 (x=0.07, 0.08; z=0, 0.2, 0.4) compounds were investigated. When Pr and Co substituted for La and Fe, the Curie temperature of the compounds was adjusted to around room temperature. The magnetic phase transition was driven from first-order to second-order due to Co substitution. As a second-order phase transition material, the MCE of La0.6Pr0.4(Fe0.825Co0.07Si0.105)13, whose relative cooling power was 175 J/kg under a field change of 2 T, ...
基金Project supported by the National Natural Science Foundation of China (50572013)
文摘We reported the magnetic properties and magnetocaloric effects(MCE) of(La0.8Ho0.2)2/3Ca1/3MnO3 and(La0.5Ho0.5)2/3Ca1/3MnO3 nanoparticles by sol-gel technique.With this method,we were able to obtain the samples with particle diameters ranging from 50 to 200 nm.In the(La1-xHox)2/3Ca1/3MnO3 compound,an external magnetic field induced a magnetic transition from an paramagnetic phase to a ferromagnetic phase above Ts=105-135 K,leading to magnetocaloric effects.The maximum value of ΔSM was 1.19 J/(kg·K) at 100 K and 2.03 J/(kg·K) at 152 K for a magnetic field change of 5 T.Because both samples had large relative cooling power(RCP) and wide δTFWHM,the study on systems with the(La1-xHox)2/3Ca1/3MnO3-related magnetic transitions may open an important field in searching good magnetic materials.
文摘In this work,a phenomenological model is applied to describe the magnetocaloric effect for the La_(0.75)Ca_(0.25)MnO_(3)system near a second-order phase transition from a ferromagnetic to a paramagnetic state.Based on this model,it can predict the values of the magnetocaloric properties from calculation of magnetization as a function of temperature under different external magnetic fields.The magnetic entropy change reaches a peak of about 5.39 J/(kg·K)at 257 K upon 4 T applied field variation.TheΔSM distribution is much more uniform than that of gadolinium,which is desirable for an Ericson-cycle magnetic refrigerator.
基金supported by the Polish Government and WBI(Belgium)in a Frame of Mutual Scientific Exchange Visits between WBI and Polish Ministry under project with reference numbers 14794/PVB/BE.POL/AN/an/2016/28611 and Rhea 2015/245812
文摘A systematic investigation on the structural, magnetic and magnetocaloric properties of Pr_(0.6)Sr_(0.4-x)Ag_xMnO_3(x=0.05 and 0.1) manganites was reported. Rietveld refinements of the X-ray diffraction patterns confirmed that all samples were single phase and crystallized in the orthorhombic structure with Pnma space group. Magnetic measurements in a magnetic applied field of 0.01T revealed that the ferromagnetic-paramagnetic transition temperature T_C decreased from about 293 to 290 K with increasing silver content from x=0.05 to 0.1. The reported magnetocaloric entropy change and relative cooling power for both samples were considerably remarkable with a △S_(max) value of 1.9 J/(kg·K)and maximum RCP values of 100 J/kg, under a magnetic field change(?μ0H) equal to 1.8T. The analysis of the universal curves gave an evidence of a second order magnetic transition for the studied samples. The magnetic field influence on both the magnetic entropy change and the relative cooling power was also studied and discussed.
基金the National Research Foundation of Korea grant the Korean government(No.2018R1D1A1B07046937)。
文摘The height of total entropy(S)for a magnetic refrigerant material is essentially concerned with the magnetic and structural transitions.However,the participation of such transitions in layered materials is not well understood.Therefore,the purpose of this work is to investigate the interplay between double layer lattice with their single perovskite counterpart,to achieve optimal magnetocaloric performance.A series of self-doped Pr_(1.4+x)Sr_(1.6-x)Mn_(2)O_(7)(0.0≤x≤0.5)Ruddlesden-Popper(R-P)perovskite have been prepared through the solid-state sintering method.With increasing the Pr-stoichiometry,the lattice faults have increased and the double layer lattice dramatically disintegrates into single perovskite structure.Due to the reduction of bilayer R-P phase into single perovskite the spin crossover occurs from weak bilayer(T=304 K)interactions towards the strong three-dimensional(T=308 K)interactions respectively.This series consistently develops thermomagnetic irreversibility in zero-field cooled(ZFC)-field cooled(FC)magnetization,which is indicative of a spin-glass state.The glassy nature has been ascribed collectively to the lattice strain produced because of dislocations and to an antiferromagnetic phase segregated at the surface.The maximum value of temperature average entropy change(TEC)and adiabatic temperature(ΔT)has enhanced nearly by 4 folds from 0.53 J kg^(-1)K^(-1),0.59 K(for x=0.0)up to 1.85 J kg^(-1)K^(-1),10 K(for x=0.5)at 2.5 T,respectively.Additionally,the room temperature relative cooling power has improved from 26.94 J/kg up to 77.84 J/kg with an applied field of 2.5 T.Our findings in this work suggest that the controlled reduction of double layer lattice into single perovskite and/or existence of both phases simultaneously in bilayer R-P manganites may be very effective in obtaining the desirable characteristics of magnetocaloric effects.
基金financially supported by Inner Mongolia Natural Science Foundation of China(2013MS0802)
文摘LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)Hxalloys were prepared by hydrogenation.Samples were annealed at 1343Kfor30-90 hto form the NaZn13 phase.La-rich andα-Fe secondary phases were also detected.Saturated hydrogenation at 553 Kand 0.15 MPa of H_2 pressure for 5hwas employed to improve the Curie temperature of the alloys to 279 K.The maximum magnetic entropy change,relative cooling power,and adiabatic temperature change of LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x annealed at 1343 Kfor 90hafter hydrogen absorption are 6.38J/(kg·K)(magnetic changesμ0ΔH =1.65T),100.1J/kg(μ0ΔH =1.65T),and 2.2 K(μ0ΔH =1.48T),respectively.Although the maximum magnetic entropy change of the LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys is lower than those of similar alloys with high purity raw materials,the relative cooling power is nearly the same.The effect of impurities of the raw materials used was also discussed.It is assumed that the impurity of 0.2wt.% Al is responsible for the reduced entropy change of the resulted alloys.The LaFe_(11.39)Mn_(0.35)Si_(1.26)B_(0.1)H_x alloys prepared by this method could be a low cost alternative material for room temperature magnetic cooling applications.