期刊文献+
共找到918篇文章
< 1 2 46 >
每页显示 20 50 100
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
1
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 General relativity Quantum Mechanics Space Time Dark Matter A New Fundamental Constant “K”
下载PDF
Einstein’s Concept of Clock Synchronization Conflicts with the Second Relativity Postulate
2
作者 Steven D. Deines 《Journal of Modern Physics》 2024年第7期985-1000,共16页
Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocks... Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. . 展开更多
关键词 Special relativity SIMULTANEITY Clock Synchronization Photon Speed Lorentz Transformation Galilean Transformation
下载PDF
Planck Quantised General Relativity Theory Written on Different Forms
3
作者 Espen Gaarder Haug 《Journal of Applied Mathematics and Physics》 2024年第6期2281-2301,共21页
This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in ot... This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin. 展开更多
关键词 General relativity Planck Quantization Compton Frequency Composite Constant G Quantum Gravity Unification Collision Space-Time
下载PDF
Between Quantum Mechanics and General Relativity
4
作者 Walter James Christensen Jr. 《Journal of Modern Physics》 2024年第8期1199-1228,共30页
The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating ... The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe. 展开更多
关键词 Dark Matter and Energy Gravitational Quanta Graviton Standing Wave Schwarzschild Metric General relativity Quantum Physics Unified Field Theory Blackholes
下载PDF
Modified Lorentz Transformations and Space-Time Splitting According to the Inverse Relativity Model
5
作者 Michael Girgis 《Journal of Applied Mathematics and Physics》 2024年第7期2467-2489,共23页
Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fab... Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius. 展开更多
关键词 Four-Dimensional Vector Analysis Four-Dimensional Subspace Causal Space Analysis of the Speed of Light Inverse Theory of relativity
下载PDF
Spherically Symmetric Problem of General Relativity for a Fluid Sphere
6
作者 Valery V. Vasiliev Leonid V. Fedorov 《Journal of Modern Physics》 2024年第4期401-415,共15页
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A... The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed. 展开更多
关键词 General relativity Spherically Symmetric Problem Fluid Sphere
下载PDF
Motion and Special Relativity in Complex Spaces
7
作者 Jerzy K. Filus 《Journal of Applied Mathematics and Physics》 2024年第1期330-361,共32页
A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<... A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories. 展开更多
关键词 Special relativity Complex Space and Time Models and Dramatic SR Simplification Complex Time and Space Separation Complex Time Interpretation
下载PDF
Special Relativity’s “Newtonization” in Complex “Para-Space”: The Two Theories Equivalence Question
8
作者 Jerzy K. Filus 《Journal of Applied Mathematics and Physics》 2024年第7期2421-2451,共31页
Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The ... Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The actual aim, however, is an additional analysis of the physical and para-physical phenomena’ behavior as we formally transport observable mechanical phenomena [motion] to non-real interior of the complex domain. As it turns out, such procedure, when properly set, corresponds to transition from relativistic to more classic (or, possibly, just classic) kind of the motion. This procedure, we call the “Newtonization of relativistic physical quantities and phenomena”, first of all, includes the mechanical motion’s characteristics in the C3. The algebraic structure of vector spaces was imposed and analyzed on both: the set of all relativistic velocities and on the set of the corresponding to them “Galilean” velocities. The key point of the analysis is realization that, as a matter of fact, the relativistic theory and the classical are equivalent at least as for the kinematics. This conclusion follows the fact that the two defined structures of topological vector spaces i.e., the structure imposed on sets of all relativistic velocities and the structure on set of all “Galilean” velocities, are both diffeomorphic in their topological parts and are isomorphic as the vector spaces. As for the relativistic theory, the two approaches: the hyperbolic (“classical” SR) with its four-vector formalism and Euclidean, where SR is modeled by the complex para-space C3, were analyzed and compared. 展开更多
关键词 Special relativity’s Hyperbolic Versus Circular Versions Galilean Kinematics Partial Equivalence of SR and Newton’s Theories Algebra of Relativistic and the Corresponding Galilean Velocities
下载PDF
Atomization Theorems in Mathematical Physics and General Relativity
9
作者 Sergei Yurievich Eremenko 《Journal of Applied Mathematics and Physics》 2023年第1期158-191,共34页
Formulated Atomization Theorems extend the theory of Atomic AString Functions evolving since the 1970s allowing representation of polynomials, complex analytic functions, and solutions of linear and nonlinear differen... Formulated Atomization Theorems extend the theory of Atomic AString Functions evolving since the 1970s allowing representation of polynomials, complex analytic functions, and solutions of linear and nonlinear differential equations via Atomic Series over smooth finite Atomic Splines. Noting the preservation of analyticity for Ricci and Einstein tensors, special new theorems are formulated for General Relativity representing spacetime field via superpositions of flexible finite “solitonic atoms” resembling quanta. The novel Atomic Spacetime model correlates with A. Einstein’s 1933 paper predicting a new “atomic theory”. The theorems can be applied to many theories of mathematical physics, elasticity, hydrodynamics, soliton, and field theories for unified representation of fields via series over finite Atomic AString Functions which may offer a unified theory under research where fields are connected with a common mathematical ancestor. 展开更多
关键词 Atomic Function AString Splines SERIES SPACETIME General relativity
下载PDF
On the Existence of a Minimum Universal Speed of Physical Transmissions Associated with Matter Wave in Special Relativity
10
作者 Vu B. Ho 《Journal of Applied Mathematics and Physics》 2023年第5期1287-1303,共17页
In this work, we show that it is possible to establish coordinate transformations between inertial reference frames in the theory of special relativity with a minimum universal speed of physical transmissions. The est... In this work, we show that it is possible to establish coordinate transformations between inertial reference frames in the theory of special relativity with a minimum universal speed of physical transmissions. The established coordinate transformations, referred to as modified Lorentz transformations because they have almost identical form to the Lorentz transformations, also comply with the requirement of invariance of the Minkowski line element. Particularly, the minimum universal speed can be associated with the phase speed of de Broglie matter wave. As application, we also discuss the possibility to formulate relativistic classical and quantum mechanics for the special relativity associated with the modified Lorentz transformations, which describes physical processes that represent an expansion or a collapsing of massive quantum particles. 展开更多
关键词 Special relativity Minkowski Line Element Minimum Universal Speed Modified Lorentz Transformations Phase Velocity De Broglie Matter Wave Relativistic Mechanics
下载PDF
The Quantum Chromodynamics Gas Density Drop and the General Theory of Relativity Ether
11
作者 Rami Rom 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第2期445-454,共10页
β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for s... β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for such cyclic deviation from the exponential first order kinetics decay law [2]. Here we propose that the β decay is a pseudo-first order exchange reaction triggered by udd&utilde;exotic mesons and propose a QCD gas theory. In analogy to the atmospheric gas density, the proposed QCD gas density drops with elevation from the sun. Accordingly, we propose that the β decay rate periodic variability is due to the pseudo-first order exchange reaction kinetics and the QCD gas atmospheric density drop. The proposed QCD gas may be a possible candidate for Einstein’s general theory of relativity ether [3]. Our main results are the derived formulas for calculating the effective mass of the QCD gas and the cosmology perfect fluid equation of state dimensionless parameter, based on the measured ratio of the β decay rates at the earth trajectory aphelion and perihelion dates. . 展开更多
关键词 Nuclear Decay β Decay Rate Variability Atmospheric Density Quantum Chromodynamics (QCD) Exotic Mesons General Theory of relativity (GR) ETHER Dark Energy
下载PDF
Inconsistency of General Relativity Predictions for the Universe Expansion vs. the Black Hole Model
12
作者 Paolo Christillin 《Journal of Modern Physics》 CAS 2023年第1期18-30,共13页
A consistency argument proves that the General Relativity predictions of a time power law decelerated Universe expansion in the matter dominated era to be untenable by more than an order of magnitude. This questions t... A consistency argument proves that the General Relativity predictions of a time power law decelerated Universe expansion in the matter dominated era to be untenable by more than an order of magnitude. This questions the usual matter conservation law and supports the black hole approach which predicts continuous matter creation for the expanding black hole we are living in. The role of homogeneity in the equations for gravity and its consequences in this respect are discussed. Further arguments in favour of the black hole model are presented. 展开更多
关键词 COSMOLOGY General relativity Black Hole
下载PDF
Spherically Symmetric Problem of General Relativity for an Elastic Solid Sphere
13
作者 Valery V. Vasiliev Leonid V. Fedorov 《Journal of Modern Physics》 CAS 2023年第6期818-832,共15页
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for an elastic solid sphere. Originally developed to describe gravitation in continuum (vacuum, gas, fluid and solid) GR does not prov... The paper is devoted to a spherically symmetric problem of General Relativity (GR) for an elastic solid sphere. Originally developed to describe gravitation in continuum (vacuum, gas, fluid and solid) GR does not provide the complete set of equations for solids and, in contrast to the Newton gravitation theory, does not allow us to study the stresses induced by gravitation in solids, because the compatibility equations which are attracted in the Euclidean space for this purpose do not exist in the Riemannian space. To solve the problem within the framework of GR, a special geometry of the Riemannian space induced by gravitation is proposed. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space in GR allows us to supplement the conservation equations for the energy-momentum tensor with compatibility equations of the theory of elasticity and to arrive to the complete set of equations for stresses. The analytical solution of the Einstein equations for the empty space surrounding the sphere and the numerical solution for the internal space inside the sphere with the proposed geometry are presented and discussed. 展开更多
关键词 General relativity Spherically Symmetric Problem Elastic Sphere
下载PDF
To the Solution of a Spherically Symmetric Problem of General Relativity
14
作者 Valery V. Vasiliev Leonid V. Fedorov 《Journal of Modern Physics》 CAS 2023年第2期147-159,共13页
The paper is devoted to the spherically symmetric problem of General Relativity. Existing solutions obtained by K. Schwarzschild and V. Fock are presented and discussed. A special geometry of the Riemannian space indu... The paper is devoted to the spherically symmetric problem of General Relativity. Existing solutions obtained by K. Schwarzschild and V. Fock are presented and discussed. A special geometry of the Riemannian space induced by gravitation is proposed. According to this geometry the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. The solution of the Einstein equations for the empty space with this geometry coincides with the solution in Gullstand-Painlever coordinates. In application to the found solution, the problem of the light trajectory deviation in the vicinity of Sun and the problem of escape velocity are discussed. 展开更多
关键词 General relativity Spherically Symmetric Problem
下载PDF
Does QM Embedded in 5th Dimensional Embedding Allow for Classical Black Hole Ideas Only in Early Universe, Whereas Corda Special Relativity Plus QM May Eliminate Event Horizons for Black Holes after Big Bang?
15
作者 Andrew Walcott Beckwith 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1073-1097,共25页
We first look at the possibility that the ideas of event horizons for black holes may have their application only in early universe conditions whereas Corda’s ground breaking work rejecting event horizons may be due ... We first look at the possibility that the ideas of event horizons for black holes may have their application only in early universe conditions whereas Corda’s ground breaking work rejecting event horizons may be due to the formation of quantum mechanics free of an embedding in 5 dimensions allowing for a simpler more direct approach, which rejects the idea of a firewall. First, we present the idea of classical black hole physics applied only once as for the early universe, whereas in such a setting, there may be a way to present NLED and structure formation due to an initial entropy approach as outlined. Then the ideas of Corda’s breakthrough are presented for the reasons he illuminated in his recent work, due to QM being fully formed separate from higher dimensional embedding after the initial evolution of the universe. 展开更多
关键词 QM Black Hole Ideas Special relativity
下载PDF
Lorentz Transformation Derived from Relativity of Time
16
作者 Jianzhong Zhao 《Journal of Modern Physics》 2022年第6期851-857,共7页
The principles of special relativity and Einstein’s simple derivation of the Lorentz transformation are reviewed. A new simple derivation of the Lorentz transformation is developed in this paper, by a new approach of... The principles of special relativity and Einstein’s simple derivation of the Lorentz transformation are reviewed. A new simple derivation of the Lorentz transformation is developed in this paper, by a new approach of light-pulse observation or time-dilation observation. Therefore, under the two principles of special relativity, there exist two equivalent simple derivations of or two equivalent approaches to the Lorentz transformation. Einstein’s approach emphasizes or highlights relativity of space while our approach emphasizes or highlights relativity of time. This research reveals, in a particular way, the equivalence of relativity of space and relativity of time in special relativity. Combination of Einstein’s approach and the approach developed in this paper makes the methodology of simple derivation of the Lorentz transformation complete and perfect. 展开更多
关键词 Special relativity Lorentz Transformation relativity of Space relativity of Time
下载PDF
Relativity Isoframes—A Useful and Potentially Unifying Conceptual Framework
17
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2021年第6期731-738,共8页
This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“sp... This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“space-time”) with and without matter embedded. They are useful for having a mental picture of space-time relationships without having to picture 4-dimensional manifolds, which very few students and scientists are able to do. With the aid of the optical lensing definition of curvature as inverse radius, a new gravitational force equation is derived, which also incorporates Einstein’s mass/energy relation in the <em>m</em><sub><em>x</em></sub> term. Thus, one may see how it is that gravitational force correlates with its time-embedded curvature-squared (<span style="white-space:nowrap;"><em>C</em><sub><em>x</em></sub><sup style="margin-left:-7px;"><em>2</em></sup></span>) space in a more accurate formulation than could be envisioned by Newton. This becomes more apparent in high gamma fields, such as found near a black hole horizon. It is hoped that probability theories, such as quantum field theories in curved space-time, might be adaptable to the general relativity isoframe concept introduced herein. 展开更多
关键词 Isoframe Isoclock General relativity Special relativity SPACE-TIME Black Holes Krogdahl Unification
下载PDF
An Analysis of Students' Mistakes through Linguistic Relativity
18
作者 赵瑶 《海外英语》 2013年第17期116-117,共2页
Sapir-Whorf Hypothesis is controversial, but the Linguistic Relativity is universally accepted by scholars. Through ana lyzing the causes of the mistakes that students often make during English learning and the relati... Sapir-Whorf Hypothesis is controversial, but the Linguistic Relativity is universally accepted by scholars. Through ana lyzing the causes of the mistakes that students often make during English learning and the relationship among thoughts, cultures and languages, this paper argues that language can influence people's thoughts and people's thoughts can influence the acquisi tion of a second language. 展开更多
关键词 LINGUISTIC relativity THOUGHTS CULTURES LANGUAGES
下载PDF
GPS Satellite Clock Corrections without Relativity Theory
19
作者 Stephan J. G. Gift 《Journal of Applied Mathematics and Physics》 2021年第10期2476-2482,共7页
The GPS satellite clock corrections (along with gravitational redshift) which are necessary for the proper operation of the GPS are fully described without invoking relativity theory as is the practice today.
关键词 GPS Selleri Transformations Time Dilation Gravitational Time Dilation Special relativity General relativity
下载PDF
Thoroughly Testing Einstein’s Special Relativity Theory, and More
20
作者 Mario Rabinowitz 《Journal of Modern Physics》 2016年第1期87-105,共19页
Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that br... Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that break the symmetry of reciprocal observations of length, time, and mass. It is shown how Newton could also have derived length contraction . Einstein’s General Relativity (EGR) will also be discussed occasionally such as a changed perspective on gravitational waves due to a small change in ESR. Some additional questions addressed are: Did Einstein totally eliminate the Ether? Is the physical interpretation of ESR completely correct? Why should there be a maximum speed limit, and should it always be the same? The mass-energy equation is revisited to show that in 1717 Newton could have derived the modern , and not known that it violates the foundation of his mechanics. Tributes are paid to Einstein and others. 展开更多
关键词 Vulnerabilities of Special relativity Challenge of Reciprocal Observations of Length and Time EINSTEIN NEWTON Galilean Transformation Thought Experiments General relativity Gravitational Waves
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部