Time dilation, space contraction and relativistic mass are combined in a novel fashion using Newtonian dynamics. In this way we can surprisingly retrieve an effective quantum gravity energy-mass equation which gives t...Time dilation, space contraction and relativistic mass are combined in a novel fashion using Newtonian dynamics. In this way we can surprisingly retrieve an effective quantum gravity energy-mass equation which gives the accurate experimental value of vacuum density. Furthermore Einstein’s equation of special relativity E = mc2, where m is the mass and c is the velocity of light developed assuming smooth 4D space time is transferred to a rugged Calabi-Yau and K3 fuzzy Kahler manifolds and revised to become E=(mc2)/(22), where the division factor 22 maybe interpreted as the compactified bosonic dimensions of Veneziano-Nambu strings. The result is again an accurate effective quantum gravity energy-mass relation akin to the one found using Newtonian dynamics which correctly predicts that 95.4915028% of the energy in the cosmos is the hypothetical missing dark energy. The agreement with WMAP and supernova measurements is in that respect astounding. In addition different theories are used to check the calculations and all lead to the same quantitative result. Thus the theories of varying speed of light, scale relativity, E-infinity theory, M-theory, Heterotic super strings, quantum field in curved space time, Veneziano’s dual resonance model, Nash Euclidean embedding and super gravity all reinforce, without any reservation, the above mentioned theoretical result which in turn is in total agreement with the most sophisticated cosmological measurements which was deservingly awarded the 2011 Nobel Prize in Physics. Finally and more importantly from certain viewpoints, we reason that the speed of light is constant because it is a definite probabilistic expectation value of a variable velocity in a hierarchical fractal clopen, i.e. closed and open micro space time.展开更多
The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using N...The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using Newtonian mechanics in conjunction with a fractal Menger sponge space proposal. The new energy equation is thus based on the familiar kinetic energy of Newtonian mechanics scaled classically by a ratio relating our familiar three dimensional space homology to that of a Menger sponge. The remarkable final result is an energy equation identical to that of Einstein’s E=mc2 but divided by 22 so that our new equation reads as . Consequently the energy Lorentz-like reduction factor of percent is in astonishing agreement with cosmological measurements which put the hypothetical dark energy including dark matter at percent of the total theoretical value. In other words our analysis confirms the cosmological data putting the total value of measured ordinary matter and ordinary energy of the entire universe at 4.5 percent. Thus ordinary positive energy which can be measured using conventional methods is the energy of the quantum particle modeled by the Zero set in five dimensions. Dark energy on the other hand is the absolute value of the negative energy of the quantum Schrodinger wave modeled by the empty set also in five dimensions.展开更多
The supposedly missing dark energy of the cosmos is found quantitatively in a direct analysis without involving ordinary energy. The analysis relies on five dimensional Kaluza-Klein spacetime and a Lagrangian constrai...The supposedly missing dark energy of the cosmos is found quantitatively in a direct analysis without involving ordinary energy. The analysis relies on five dimensional Kaluza-Klein spacetime and a Lagrangian constrained by an auxiliary condition. Employing the Lagrangian multiplier method, it is found that this multiplier is equal to the dark energy of the cosmos and is given by where E is energy, m is mass, c is the speed of light, and λ is the Lagrangian multiplier. The result is in full agreement with cosmic measurements which were awarded the 2011 Nobel Prize in Physics as well as with the interpretation that dark energy is the energy of the quantum wave while ordinary energy is the energy of the quantum particle. Consequently dark energy could not be found directly using our current measurement methods because measurement leads to wave collapse leaving only the quantum particle and its ordinary energy intact.展开更多
文摘Time dilation, space contraction and relativistic mass are combined in a novel fashion using Newtonian dynamics. In this way we can surprisingly retrieve an effective quantum gravity energy-mass equation which gives the accurate experimental value of vacuum density. Furthermore Einstein’s equation of special relativity E = mc2, where m is the mass and c is the velocity of light developed assuming smooth 4D space time is transferred to a rugged Calabi-Yau and K3 fuzzy Kahler manifolds and revised to become E=(mc2)/(22), where the division factor 22 maybe interpreted as the compactified bosonic dimensions of Veneziano-Nambu strings. The result is again an accurate effective quantum gravity energy-mass relation akin to the one found using Newtonian dynamics which correctly predicts that 95.4915028% of the energy in the cosmos is the hypothetical missing dark energy. The agreement with WMAP and supernova measurements is in that respect astounding. In addition different theories are used to check the calculations and all lead to the same quantitative result. Thus the theories of varying speed of light, scale relativity, E-infinity theory, M-theory, Heterotic super strings, quantum field in curved space time, Veneziano’s dual resonance model, Nash Euclidean embedding and super gravity all reinforce, without any reservation, the above mentioned theoretical result which in turn is in total agreement with the most sophisticated cosmological measurements which was deservingly awarded the 2011 Nobel Prize in Physics. Finally and more importantly from certain viewpoints, we reason that the speed of light is constant because it is a definite probabilistic expectation value of a variable velocity in a hierarchical fractal clopen, i.e. closed and open micro space time.
文摘The 95.5 percent of discrepancy between theoretical prediction based on Einstein’s theory of relativity and the accurate cosmological measurement of WMAP and various supernova analyses is resolved classically using Newtonian mechanics in conjunction with a fractal Menger sponge space proposal. The new energy equation is thus based on the familiar kinetic energy of Newtonian mechanics scaled classically by a ratio relating our familiar three dimensional space homology to that of a Menger sponge. The remarkable final result is an energy equation identical to that of Einstein’s E=mc2 but divided by 22 so that our new equation reads as . Consequently the energy Lorentz-like reduction factor of percent is in astonishing agreement with cosmological measurements which put the hypothetical dark energy including dark matter at percent of the total theoretical value. In other words our analysis confirms the cosmological data putting the total value of measured ordinary matter and ordinary energy of the entire universe at 4.5 percent. Thus ordinary positive energy which can be measured using conventional methods is the energy of the quantum particle modeled by the Zero set in five dimensions. Dark energy on the other hand is the absolute value of the negative energy of the quantum Schrodinger wave modeled by the empty set also in five dimensions.
文摘The supposedly missing dark energy of the cosmos is found quantitatively in a direct analysis without involving ordinary energy. The analysis relies on five dimensional Kaluza-Klein spacetime and a Lagrangian constrained by an auxiliary condition. Employing the Lagrangian multiplier method, it is found that this multiplier is equal to the dark energy of the cosmos and is given by where E is energy, m is mass, c is the speed of light, and λ is the Lagrangian multiplier. The result is in full agreement with cosmic measurements which were awarded the 2011 Nobel Prize in Physics as well as with the interpretation that dark energy is the energy of the quantum wave while ordinary energy is the energy of the quantum particle. Consequently dark energy could not be found directly using our current measurement methods because measurement leads to wave collapse leaving only the quantum particle and its ordinary energy intact.