To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA)...To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA) cellular networks, a cross-layer design framework that jointly selects the Transmission Policy (TP) for SVC video frames, assigns OFDMA subcarriers, and allocates power for each subcarrier is proposed. We apply the dual decomposition method to the problem, and obtain a TP selection subproblem for each SVC video adaptation and a resource allocation subproblem of Joint Subcarrier, Relay and Power Allocation (JSRPA). A second level of dual decomposition is used to divide the JSRPA problem into independent subcarrier subproblems. The proposed Crosslayer Trade-off Optimization (CTO) algorithm is sub-distributed with significantly low complexity. A performance evaluation with typical SVC video traces demonstrates that the proposed algorithm is able to converge and efficiently achieve the optimal trade-off between the video quality and energy consumption at the MSs for uplink SVC streaming.展开更多
In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC)...In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC) schemes are proposed. When the condition of all direct channels is worse, JNFC scheme based on distributed LT(DLT) codes is used. Otherwise, JNFC scheme based on multi-dimensional LT(MD-LT) codes is suited. For both two above-mentioned schemes, the united degree distribution design method for short-length fountain codes is proposed. For the latter scheme, MD-LT codes are proposed for equal error protection(EEP) of each user. Simulation results and analysis show that the united degree distribution need less decoding overhead compared with other degree distribution for short-length fountain codes. And then, all users are protected equally in despite of asymmetric uplinks.展开更多
With the emergence of the COVID-19 pandemic,the World Health Organization(WHO)has urged scientists and industrialists to exploremodern information and communication technology(ICT)as a means to reduce or even eliminat...With the emergence of the COVID-19 pandemic,the World Health Organization(WHO)has urged scientists and industrialists to exploremodern information and communication technology(ICT)as a means to reduce or even eliminate it.The World Health Organization recently reported that the virus may infect the organism through any organ in the living body,such as the respiratory,the immunity,the nervous,the digestive,or the cardiovascular system.Targeting the abovementioned goal,we envision an implanted nanosystem embedded in the intra living-body network.The main function of the nanosystem is either to perform diagnosis and mitigation of infectious diseases or to implement a targeted drug delivery system(i.e.,delivery of the therapeutic drug to the diseased tissue or targeted cell).The communication among the nanomachines is accomplished via communication-based molecular diffusion.The control/interconnection of the nanosystem is accomplished through the utilization of Internet of bio-nano things(IoBNT).The proposed nanosystem is designed to employ a coded relay nanomachine disciplined by the decode and forward(DF)principle to ensure reliable drug delivery to the targeted cell.Notably,both the sensitivity of the drug dose and the phenomenon of drug molecules loss before delivery to the target cell site in long-distance due to the molecules diffusion process are taken into account.In this paper,a coded relay NM with conventional coding techniques such as RS and Turbo codes is selected to achieve minimum bit error rate(BER)performance and high signal-to-noise ratio(SNR),while the detection process is based on maximum likelihood(ML)probability and minimum error probability(MEP).The performance analysis of the proposed scheme is evaluated in terms of channel capacity and bit error rate by varying system parameters such as relay position,number of released molecules,relay and receiver size.Analysis results are validated through simulation and demonstrate that the proposed scheme can significantly improve delivery performance of the desirable drugs in the molecular communication system.展开更多
Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly...Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uneoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.展开更多
Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key ...Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.展开更多
A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the...A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the relay,where imperfect decoding occurs,is considered in the proposed scheme. By employing a LLR-based threshold at the relay in the proposed scheme,the reliability of decoder-LLRs can be measured. As a result,only reliable symbols will be forwarded to the destination and a maximum ratio combiner( MRC) is used to combine signals received from both the source and the relay. In order to obtain the optimal threshold at the relay,an equivalent model of decoderLLRs is investigated,so as to derive the expression of the bit error probability( BEP) of the proposed scheme under binary phase shift keying( BPSK) modulation. Simulation results demonstrate that the proposed scheme can effectively mitigate error propagation at the relay and also outperforms other existing methods.展开更多
This paper considers the use of polar codes to enable secure transmission over parallel relay channels.By exploiting the properties of polar codes over parallel channels, a polar encoding algorithm is designed based o...This paper considers the use of polar codes to enable secure transmission over parallel relay channels.By exploiting the properties of polar codes over parallel channels, a polar encoding algorithm is designed based on Channel State Information(CSI) between the legitimate transmitter(Alice) and the legitimate receiver(Bob).Different from existing secure transmission schemes, the proposed scheme does not require CSI between Alice and the eavesdropper(Eve). The proposed scheme is proven to be reliable and shown to be capable of transmitting information securely under Amplify-and-Forward(AF) relay protocol, thereby providing security against passive and active attackers.展开更多
基金partially supported by the National Natural Science Foundation of China under Grants No. 610202380, No. 60932007Major Program of National Natural Science Foundation of China under Grant No. 60932007+2 种基金Tianjin Research Program of Application Foundation and Advanced Technology under Grant No. 12JCQNJC00300Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20110032120029the Innovation Foundation of Tianjin University
文摘To achieve an optimal trade-off between video quality and energy efficiency in the uplink streaming of multi-user Scalable Video Coding (SVC) videos in relay-based Orthogonal Frequency Division Multiple Access (OFDMA) cellular networks, a cross-layer design framework that jointly selects the Transmission Policy (TP) for SVC video frames, assigns OFDMA subcarriers, and allocates power for each subcarrier is proposed. We apply the dual decomposition method to the problem, and obtain a TP selection subproblem for each SVC video adaptation and a resource allocation subproblem of Joint Subcarrier, Relay and Power Allocation (JSRPA). A second level of dual decomposition is used to divide the JSRPA problem into independent subcarrier subproblems. The proposed Crosslayer Trade-off Optimization (CTO) algorithm is sub-distributed with significantly low complexity. A performance evaluation with typical SVC video traces demonstrates that the proposed algorithm is able to converge and efficiently achieve the optimal trade-off between the video quality and energy consumption at the MSs for uplink SVC streaming.
基金supported in part by a grant from the Ph.D. Programs Foundation of Ministry of Education of China under Grants No. 20094307110004National Natural Science Foundation of China under Grants No.61372098, No.61101074Natural Science Foundation of Hunan Province, China under Grants No.12jj2037
文摘In relay-assisted multi-user system, relay coding is important to enhance the robustness and reliability of cooperative transmission. For better adaptability and efficiency, two joint network and fountain coding(JNFC) schemes are proposed. When the condition of all direct channels is worse, JNFC scheme based on distributed LT(DLT) codes is used. Otherwise, JNFC scheme based on multi-dimensional LT(MD-LT) codes is suited. For both two above-mentioned schemes, the united degree distribution design method for short-length fountain codes is proposed. For the latter scheme, MD-LT codes are proposed for equal error protection(EEP) of each user. Simulation results and analysis show that the united degree distribution need less decoding overhead compared with other degree distribution for short-length fountain codes. And then, all users are protected equally in despite of asymmetric uplinks.
基金supported by the Institute for Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.2019-0-01343,Training Key Talents in Industrial Convergence Security).
文摘With the emergence of the COVID-19 pandemic,the World Health Organization(WHO)has urged scientists and industrialists to exploremodern information and communication technology(ICT)as a means to reduce or even eliminate it.The World Health Organization recently reported that the virus may infect the organism through any organ in the living body,such as the respiratory,the immunity,the nervous,the digestive,or the cardiovascular system.Targeting the abovementioned goal,we envision an implanted nanosystem embedded in the intra living-body network.The main function of the nanosystem is either to perform diagnosis and mitigation of infectious diseases or to implement a targeted drug delivery system(i.e.,delivery of the therapeutic drug to the diseased tissue or targeted cell).The communication among the nanomachines is accomplished via communication-based molecular diffusion.The control/interconnection of the nanosystem is accomplished through the utilization of Internet of bio-nano things(IoBNT).The proposed nanosystem is designed to employ a coded relay nanomachine disciplined by the decode and forward(DF)principle to ensure reliable drug delivery to the targeted cell.Notably,both the sensitivity of the drug dose and the phenomenon of drug molecules loss before delivery to the target cell site in long-distance due to the molecules diffusion process are taken into account.In this paper,a coded relay NM with conventional coding techniques such as RS and Turbo codes is selected to achieve minimum bit error rate(BER)performance and high signal-to-noise ratio(SNR),while the detection process is based on maximum likelihood(ML)probability and minimum error probability(MEP).The performance analysis of the proposed scheme is evaluated in terms of channel capacity and bit error rate by varying system parameters such as relay position,number of released molecules,relay and receiver size.Analysis results are validated through simulation and demonstrate that the proposed scheme can significantly improve delivery performance of the desirable drugs in the molecular communication system.
文摘Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uneoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.
基金supported by the National Natural Science Foundation of China(No.61171099,No.61671080),Nokia Beijing Bell lab
文摘Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.
文摘A distributed turbo codes( DTC) scheme with log likelihood ratio( LLR)-based threshold at the relay for a two-hop relay networks is proposed. Different from traditional DTC schemes,the retransmission scheme at the relay,where imperfect decoding occurs,is considered in the proposed scheme. By employing a LLR-based threshold at the relay in the proposed scheme,the reliability of decoder-LLRs can be measured. As a result,only reliable symbols will be forwarded to the destination and a maximum ratio combiner( MRC) is used to combine signals received from both the source and the relay. In order to obtain the optimal threshold at the relay,an equivalent model of decoderLLRs is investigated,so as to derive the expression of the bit error probability( BEP) of the proposed scheme under binary phase shift keying( BPSK) modulation. Simulation results demonstrate that the proposed scheme can effectively mitigate error propagation at the relay and also outperforms other existing methods.
基金supported in part by the National Natural Science Foundation of China(No.61371075)Beijing Municipal Science and Technology Project(No.D171100006317001)
文摘This paper considers the use of polar codes to enable secure transmission over parallel relay channels.By exploiting the properties of polar codes over parallel channels, a polar encoding algorithm is designed based on Channel State Information(CSI) between the legitimate transmitter(Alice) and the legitimate receiver(Bob).Different from existing secure transmission schemes, the proposed scheme does not require CSI between Alice and the eavesdropper(Eve). The proposed scheme is proven to be reliable and shown to be capable of transmitting information securely under Amplify-and-Forward(AF) relay protocol, thereby providing security against passive and active attackers.