This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va...This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.展开更多
A large semantic gap exists between content based index retrieval(CBIR) and high-level semantic,additional semantic information should be attached to the images,it refers in three respects including semantic represent...A large semantic gap exists between content based index retrieval(CBIR) and high-level semantic,additional semantic information should be attached to the images,it refers in three respects including semantic representation model,semantic information building and semantic retrieval techniques.In this paper,we introduce an associated semantic network and an automatic semantic annotation system.In the system,a semantic network model is employed as the semantic representation model,it uses semantic Key words,linguistic ontology and low-level features in semantic similarity calculating.Through several times of users' relevance feedback,semantic network is enriched automatically.To speed up the growth of semantic network and get a balance annotation,semantic seeds and semantic loners are employed especially.展开更多
The main thrust of this paper is application of a novel data mining approach on the log of user' s feedback to improve web multimedia information retrieval performance. A user space model was constructed based...The main thrust of this paper is application of a novel data mining approach on the log of user' s feedback to improve web multimedia information retrieval performance. A user space model was constructed based on data mining, and then integrated into the original information space model to improve the accuracy of the new information space model. It can remove clutter and irrelevant text information and help to eliminate mismatch between the page author' s expression and the user' s understanding and expectation. User spacemodel was also utilized to discover the relationship between high-level and low-level features for assigning weight. The authors proposed improved Bayesian algorithm for data mining. Experiment proved that the au-thors' proposed algorithm was efficient.展开更多
This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed ac...This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.展开更多
In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects...In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.展开更多
In Chinese question answering system, because there is more semantic relation in questions than that in query words, the precision can be improved by expanding query while using natural language questions to retrieve ...In Chinese question answering system, because there is more semantic relation in questions than that in query words, the precision can be improved by expanding query while using natural language questions to retrieve documents. This paper proposes a new approach to query expansion based on semantics and statistics Firstly automatic relevance feedback method is used to generate a candidate expansion word set. Then the expanded query words are selected from the set based on the semantic similarity and seman- tic relevancy between the candidate words and the original words. Experiments show the new approach is effective for Web retrieval and out-performs the conventional expansion approaches.展开更多
A novel dynamic batch selective sampling algorithm based on version space analysis is presented. In the traditional batch selective sampling, example selection is entirely determined by the existing unreliable classif...A novel dynamic batch selective sampling algorithm based on version space analysis is presented. In the traditional batch selective sampling, example selection is entirely determined by the existing unreliable classification boundary; meanwhile, within a batch, examples labeled previously fail to provide instructive information for the selection of the rest. As a result, using the examples selected in batch mode for model refinement will jeopardize the classification performance. Based on the duality between feature space and parameter space under the SVM active learning fi:amework, dynamic batch selective sampling is proposed to address the problem. We select a batch of examples dynamically, using the examples labeled previously as guidance for further selection. In this way, the selection of feedback examples is determined by both the existing classification model and the examples labeled previously. Encouraging experimental results demonstrate the effectiveness of the proposed algorithm.展开更多
A formula to compute the similarity between two audio feature vectors is proposed, which can map arbitrary pair of vectors with equivalent dimension to [0,1). To fulfill the task of audio segmentation, a self-similar...A formula to compute the similarity between two audio feature vectors is proposed, which can map arbitrary pair of vectors with equivalent dimension to [0,1). To fulfill the task of audio segmentation, a self-similarity matrix is computed to reveal the inner structure of an audio clip to be segmented. As the final result must be consistent with the subjective evaluation and be adaptive to some special applications, a set of weights is adopted, which can be modified through relevance feedback techniques. Experiments show that satisfactory result can be achieved via the algorithm proposed in this paper.展开更多
The information access is the rich data available for information retrieval, evolved to provide principle approaches or strategies for searching. For building the successful web retrieval search engine model, there ar...The information access is the rich data available for information retrieval, evolved to provide principle approaches or strategies for searching. For building the successful web retrieval search engine model, there are a number of prospects that arise at the different levels where techniques, such as Usenet, support vector machine are employed to have a significant impact. The present investigations explore the number of problems identified its level and related to finding information on web. The authors have attempted to examine the issues and prospects by applying different methods such as web graph analysis, the retrieval and analysis of newsgroup postings and statistical methods for inferring meaning in text. The proposed model thus assists the users in finding the existing formation of data they need. The study proposes three heuristics model to characterize the balancing between query and feedback information, so that adaptive relevance feedback. The authors have made an attempt to discuss the parameter factors that are responsible for the efficient searching. The important parameters can be taken care of for the future extension or development of search engines.展开更多
In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is mode...In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.展开更多
Relevance feedback plays a key role in multiple feature-based image retrieval applications. This paper describes an online metric learning approach for a set of ranking functions. In the feedback round, the most relev...Relevance feedback plays a key role in multiple feature-based image retrieval applications. This paper describes an online metric learning approach for a set of ranking functions. In the feedback round, the most relevant and most nonrelevant images related to the target image are selected to construct a relative comparison triplet. The weighting parameters of the multiple ranking functions are updated by minimizing a quadratic objective function constrained by the triplet. The approach unifies the learning algorithm for the most commonly used ranking functions. Thus, multiple features with their own ranking function can easily be employed in the ranking module without feature reconstruction. The method is computationally inexpensive and appropriate for large-scale e-commerce image retrieval applications. Customized ranking functions are well supported. Practically, simplified ranking functions yield better results when the number of query rounds is relatively small. Experiments with an image dataset from a real e-commerce platform show the superiority of the proposed approach.展开更多
With the rapid development of satellite remote sensing technology and an ever-increasing number of Earth observation satellites being launched,the global volume of remotely sensed imagery has been growing exponentiall...With the rapid development of satellite remote sensing technology and an ever-increasing number of Earth observation satellites being launched,the global volume of remotely sensed imagery has been growing exponentially.Processing the variety of remotely sensed data has increasingly been complex and difficult.It is also hard to efficiently and intelligently retrieve what users need from a massive database of images.This paper introduces an improved support vector machine(SVM)model,which optimizes the model parameters and selects the feature subset based on the particle swarm optimization(PSO)method and genetic algorithm(GA)for remote sensing image retrieval.The results from an image retrieval experiment show that our method outperforms traditional methods such as GRID,PSO,and GA in terms of consistency and stability.展开更多
To improve the detection of mass with appearance that borders on the similarity between mass and density tissues in the breast,an support vector machine classifier based on typical features is designed to classify the...To improve the detection of mass with appearance that borders on the similarity between mass and density tissues in the breast,an support vector machine classifier based on typical features is designed to classify the region of interest(ROI).Furthermore,relevance feedback is introduced to improve the performance of support vector machines.A new mass detection scheme based on the support vector machine and the relevance feedback is proposed.Simulation experiments on mammograms illustrate that the novel support vector machine classifier based on typical features can improve the detection performance of the featureless classifier by 5%,while the introduction of relevance feedback can further improve the detection performance to about 90%.展开更多
In this paper, we propose a mapping from low level feature space to the semantic space drawn by the users through relevance feedback to enhance the performance of current content based image retrieval (CBIR) systems...In this paper, we propose a mapping from low level feature space to the semantic space drawn by the users through relevance feedback to enhance the performance of current content based image retrieval (CBIR) systems. The proposed approach makes a rule base for its inference and configures it using the feedbacks gathered from users during the life cycle of the system. Each rule makes a hypercube (HC) in the feature space corresponding to a semantic concept in the semantic space. Both short and long term strategies are taken to improve the accuracy of the system in response to each feedback of the user and gradually bridge the semantic gap. A scoring paradigm is designed to determine the effective rules and suppress the inefficient ones. For improving the response time, an HC merging approach and, for reducing the conflicts, an HC splitting method is designed. Our experiments on a set of 11 000 images from the Corel database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to some existing approaches reported recently in the literature. Moreover, our approach can be better trained and is not saturated in long time, i.e., any feedback improves the precision and recall of the system. Another strength of our method is its ability to address the dynamic nature of the image database such that it can follow the changes occurred instantaneously and permanently by adding and dropping images.展开更多
文摘This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.
文摘A large semantic gap exists between content based index retrieval(CBIR) and high-level semantic,additional semantic information should be attached to the images,it refers in three respects including semantic representation model,semantic information building and semantic retrieval techniques.In this paper,we introduce an associated semantic network and an automatic semantic annotation system.In the system,a semantic network model is employed as the semantic representation model,it uses semantic Key words,linguistic ontology and low-level features in semantic similarity calculating.Through several times of users' relevance feedback,semantic network is enriched automatically.To speed up the growth of semantic network and get a balance annotation,semantic seeds and semantic loners are employed especially.
文摘The main thrust of this paper is application of a novel data mining approach on the log of user' s feedback to improve web multimedia information retrieval performance. A user space model was constructed based on data mining, and then integrated into the original information space model to improve the accuracy of the new information space model. It can remove clutter and irrelevant text information and help to eliminate mismatch between the page author' s expression and the user' s understanding and expectation. User spacemodel was also utilized to discover the relationship between high-level and low-level features for assigning weight. The authors proposed improved Bayesian algorithm for data mining. Experiment proved that the au-thors' proposed algorithm was efficient.
文摘This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.
基金the National Basic Research Program (973) of China (No. 2004CB719401)the National Research Foundation for the Doctoral Program of Higher Education of China (No.20060003060)
文摘In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.
基金the Specialized Research Program Fundthe Doctoral Program of Higher Education of China (20050007023)the Natural Science Foundation of Shandong Province(Y2004G04)
文摘In Chinese question answering system, because there is more semantic relation in questions than that in query words, the precision can be improved by expanding query while using natural language questions to retrieve documents. This paper proposes a new approach to query expansion based on semantics and statistics Firstly automatic relevance feedback method is used to generate a candidate expansion word set. Then the expanded query words are selected from the set based on the semantic similarity and seman- tic relevancy between the candidate words and the original words. Experiments show the new approach is effective for Web retrieval and out-performs the conventional expansion approaches.
文摘A novel dynamic batch selective sampling algorithm based on version space analysis is presented. In the traditional batch selective sampling, example selection is entirely determined by the existing unreliable classification boundary; meanwhile, within a batch, examples labeled previously fail to provide instructive information for the selection of the rest. As a result, using the examples selected in batch mode for model refinement will jeopardize the classification performance. Based on the duality between feature space and parameter space under the SVM active learning fi:amework, dynamic batch selective sampling is proposed to address the problem. We select a batch of examples dynamically, using the examples labeled previously as guidance for further selection. In this way, the selection of feedback examples is determined by both the existing classification model and the examples labeled previously. Encouraging experimental results demonstrate the effectiveness of the proposed algorithm.
文摘A formula to compute the similarity between two audio feature vectors is proposed, which can map arbitrary pair of vectors with equivalent dimension to [0,1). To fulfill the task of audio segmentation, a self-similarity matrix is computed to reveal the inner structure of an audio clip to be segmented. As the final result must be consistent with the subjective evaluation and be adaptive to some special applications, a set of weights is adopted, which can be modified through relevance feedback techniques. Experiments show that satisfactory result can be achieved via the algorithm proposed in this paper.
文摘The information access is the rich data available for information retrieval, evolved to provide principle approaches or strategies for searching. For building the successful web retrieval search engine model, there are a number of prospects that arise at the different levels where techniques, such as Usenet, support vector machine are employed to have a significant impact. The present investigations explore the number of problems identified its level and related to finding information on web. The authors have attempted to examine the issues and prospects by applying different methods such as web graph analysis, the retrieval and analysis of newsgroup postings and statistical methods for inferring meaning in text. The proposed model thus assists the users in finding the existing formation of data they need. The study proposes three heuristics model to characterize the balancing between query and feedback information, so that adaptive relevance feedback. The authors have made an attempt to discuss the parameter factors that are responsible for the efficient searching. The important parameters can be taken care of for the future extension or development of search engines.
文摘In this paper, region features and relevance feedback are used to improve the performance of CBIR. Unlike existing region-based approaches where either individual regions are used or only simple spatial layout is modeled, the proposed approach simultaneously models both region properties and their spatial relationships in a probabilistic framework. Furthermore, the retrieval performance is improved by an adaptive filter based relevance feedback. To illustrate the performance of the proposed approach, extensive experiments have been carried out on a large heterogeneous image collection with 17,000 images, which render promising results on a wide variety of queries.
基金Supported by the National Natural Science Foundation of China(No. 60872070)
文摘Relevance feedback plays a key role in multiple feature-based image retrieval applications. This paper describes an online metric learning approach for a set of ranking functions. In the feedback round, the most relevant and most nonrelevant images related to the target image are selected to construct a relative comparison triplet. The weighting parameters of the multiple ranking functions are updated by minimizing a quadratic objective function constrained by the triplet. The approach unifies the learning algorithm for the most commonly used ranking functions. Thus, multiple features with their own ranking function can easily be employed in the ranking module without feature reconstruction. The method is computationally inexpensive and appropriate for large-scale e-commerce image retrieval applications. Customized ranking functions are well supported. Practically, simplified ranking functions yield better results when the number of query rounds is relatively small. Experiments with an image dataset from a real e-commerce platform show the superiority of the proposed approach.
基金The authors would like to thank the Youth Council Project for the promotion of innovationas well as the Chinese Academy of Sciences and the National Natural Science Foundation for Young Scientists of China,No.40701105.
文摘With the rapid development of satellite remote sensing technology and an ever-increasing number of Earth observation satellites being launched,the global volume of remotely sensed imagery has been growing exponentially.Processing the variety of remotely sensed data has increasingly been complex and difficult.It is also hard to efficiently and intelligently retrieve what users need from a massive database of images.This paper introduces an improved support vector machine(SVM)model,which optimizes the model parameters and selects the feature subset based on the particle swarm optimization(PSO)method and genetic algorithm(GA)for remote sensing image retrieval.The results from an image retrieval experiment show that our method outperforms traditional methods such as GRID,PSO,and GA in terms of consistency and stability.
基金supported by the National Natural Science Foundation of China (Grant No.60771068)the Key Project of Chinese Ministry of Education (No.104173)the Program for New Century Excellent Talents in University (No.NCET-04-0948).
文摘To improve the detection of mass with appearance that borders on the similarity between mass and density tissues in the breast,an support vector machine classifier based on typical features is designed to classify the region of interest(ROI).Furthermore,relevance feedback is introduced to improve the performance of support vector machines.A new mass detection scheme based on the support vector machine and the relevance feedback is proposed.Simulation experiments on mammograms illustrate that the novel support vector machine classifier based on typical features can improve the detection performance of the featureless classifier by 5%,while the introduction of relevance feedback can further improve the detection performance to about 90%.
文摘In this paper, we propose a mapping from low level feature space to the semantic space drawn by the users through relevance feedback to enhance the performance of current content based image retrieval (CBIR) systems. The proposed approach makes a rule base for its inference and configures it using the feedbacks gathered from users during the life cycle of the system. Each rule makes a hypercube (HC) in the feature space corresponding to a semantic concept in the semantic space. Both short and long term strategies are taken to improve the accuracy of the system in response to each feedback of the user and gradually bridge the semantic gap. A scoring paradigm is designed to determine the effective rules and suppress the inefficient ones. For improving the response time, an HC merging approach and, for reducing the conflicts, an HC splitting method is designed. Our experiments on a set of 11 000 images from the Corel database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to some existing approaches reported recently in the literature. Moreover, our approach can be better trained and is not saturated in long time, i.e., any feedback improves the precision and recall of the system. Another strength of our method is its ability to address the dynamic nature of the image database such that it can follow the changes occurred instantaneously and permanently by adding and dropping images.