Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute s...Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.展开更多
Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equ...Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.展开更多
This paper establishes a mathematical model of the reliability optimization design for the safe-arming system of an air-faced missile, and presents a solving method for the model. The computational results provide a v...This paper establishes a mathematical model of the reliability optimization design for the safe-arming system of an air-faced missile, and presents a solving method for the model. The computational results provide a valuable reference for the reliability design for the safe-arming system of an air-faced missile.展开更多
Failure of a safety critical system can lead to big losses. Very high software reliability is required for automating the working of systems such as aircraft controller and nuclear reactor controller software systems....Failure of a safety critical system can lead to big losses. Very high software reliability is required for automating the working of systems such as aircraft controller and nuclear reactor controller software systems. Fault-tolerant softwares are used to increase the overall reliability of software systems. Fault tolerance is achieved using the fault-tolerant schemes such as fault recovery (recovery block scheme), fault masking (N-version programming (NVP)) or a combination of both (Hybrid scheme). These softwares incorporate the ability of system survival even on a failure. Many researchers in the field of software engineering have done excellent work to study the reliability of fault-tolerant systems. Most of them consider the stable system reliability. Few attempts have been made in reliability modeling to study the reliability growth for an NVP system. Recently, a model was proposed to analyze the reliability growth of an NVP system incorporating the effect of fault removal efficiency. In this model, a proportion of the number of failures is assumed to be a measure of fault generation while an appropriate measure of fault generation should be the proportion of faults removed. In this paper, we first propose a testing efficiency model incorporating the effect of imperfect fault debugging and error generation. Using this model, a software reliability growth model (SRGM) is developed to model the reliability growth of an NVP system. The proposed model is useful for practical applications and can provide the measures of debugging effectiveness and additional workload or skilled professional required. It is very important for a developer to determine the optimal release time of the software to improve its performance in terms of competition and cost. In this paper, we also formulate the optimal software release time problem for a 3VP system under fuzzy environment and discuss a the fuzzy optimization technique for solving the problem with a numerical illustration.展开更多
Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement ...Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement of elements (components) in the system. To avoid serious failures for such complex systems, recourse can be had to the redundancy techniques available in the literature. These techniques help to improve system reliability, without affecting the reliability of system components. This paper is interested in the proposal of a model for evaluating the failure rate of a standby multi-components system and in improving the reliability of mechanical systems, arranged in a topology (series, parallel, or mixed).展开更多
If the components in a component-based software system come from different sources, the characteristics of the components may be different. Therefore, evaluating the reliability of a component-based system with a fixe...If the components in a component-based software system come from different sources, the characteristics of the components may be different. Therefore, evaluating the reliability of a component-based system with a fixed model for all components will not be reasonable. To solve this problem, this paper combines a single reliability growth model with an architecture-based reliability model, and proposes an optimal selecting approach. First, the most appropriate model of each component is selected according to the historical reliability data of the component, so that the evaluation deviation is the smallest. Then, system reliability is evaluated according to both the relationships among components and the using frequency of each component. As the approach takes into account the historical data and the using frequency of each component, the evaluation and prediction results are more accurate than those of using a single model.展开更多
For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization...For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears.展开更多
Environmental stress screening (ESS) is a technological process to reduce the costly early field failure of electronic components. This paper builds an optimization model for ESS of electronic components to obtain the...Environmental stress screening (ESS) is a technological process to reduce the costly early field failure of electronic components. This paper builds an optimization model for ESS of electronic components to obtain the optimal ESS duration. The failure phenomena of ESS are modeled by mixed distribution, and optimal ESS duration is defined by maximizing life-cycle cost savings under the condition of meeting reliability requirement.展开更多
Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-p...Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.展开更多
The development and application of new reliability models and methods are presented to analyze the system relia- bility of complex condition monitoring systems.The methods include a method analyzing failure modes of a...The development and application of new reliability models and methods are presented to analyze the system relia- bility of complex condition monitoring systems.The methods include a method analyzing failure modes of a type of redundant con- dition monitoring systems (RCMS) by invoking failure tree model,Markov modeling techniques for analyzing system reliability of RCMS,and methods for estimating Markov model parameters.Furthermore,a computing case is investigated and many conclu- sions upon this case are summarized.Results show that the method proposed here is practical and valuable for designing condition monitoring systems and their maintenance.展开更多
According to the consequences of software failures, software faults remaining in safety-critical systems can be classified into two sets: common faults and fatal faults. Common faults cause slight loss when they are ...According to the consequences of software failures, software faults remaining in safety-critical systems can be classified into two sets: common faults and fatal faults. Common faults cause slight loss when they are activated. A fatal fault can lead to significant loss, and even damage the safety-crltical system entirely when it is activated. A software reliability growth model for safety-critical systems is developed based on G - 0 model. And a software cost model is proposed too. The cost model considers maintenance and risk costs due to software failures. The optimal release policies are discussed to minimize the total software cost. A numerical exampie is provided to illustrate how to use the results we obtained.展开更多
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty...This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.展开更多
In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process ...In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.展开更多
Reliability, maintainability and testability (RMT) are important properties of equipment, since they have important influ- ence on operational availability and life cycle costs (LCC). There- fore, weighting and op...Reliability, maintainability and testability (RMT) are important properties of equipment, since they have important influ- ence on operational availability and life cycle costs (LCC). There- fore, weighting and optimizing the three properties are of great significance. A new approach for optimization of RMT parameters is proposed. First of all, the model for the equipment operation pro- cess is established based on the generalized stochastic Petri nets (GSPN) theory. Then, by solving the GSPN model, the quantitative relationship between operational availability and RMT parameters is obtained. Afterwards, taking history data of similar equipment and operation process into consideration, a cost model of design, manufacture and maintenance is developed. Based on operational availability, the cost model and parameters ranges, an optimization model of RMT parameters is built. Finally, the effectiveness and practicability of this approach are validated through an example.展开更多
The contribution deals with the optimization of a sequential preventive maintenance schedule of a technical device. We are given an initial time-to-failure probability distribution, model of changes of this distributi...The contribution deals with the optimization of a sequential preventive maintenance schedule of a technical device. We are given an initial time-to-failure probability distribution, model of changes of this distribution after maintenance actions, as well as the costs of maintenance, of a device acquisition, and of the impact of failure. The maintenance timing and, eventually, its extent, are the matter of optimization. The objective of the contribution is two-fold: first, to formulate a proper (random) objective function evaluating the lifetime of the maintained device relatively to maintenance costs;second, to propose a numerical method searching for a maintenance policy optimizing selected characteristics of this objective function. The method is based on the MCMC random search combined with simulated annealing. It is also shown that such a method is rather universal for different problem specifications. The approach will be illustrated on an artificial example dealing with accelerated lifetime after each maintenance action.展开更多
A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single d...A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single degree of freedom model should be improved.A multiple degrees of freedom dynamics model is presented for the solar arrays deployment to guide the drive assembly design.The established model includes the functions of the torsion springs,the synchronization mechanism and the lock-up impact.A numerical computation method is proposed to solve the dynamics coupling problem.Then considering the drive torque requirement calculated by the proposed model,a root hinge drive assembly is developed based on the reliability engineering design methods,and dual actuators are used as a redundancy design.Pseudo-efficiency is introduced and the major factors influencing the(pseudo-)efficiency of the gear mechanism designed with high reduction ratio are studied for further test data analysis.A ground prototype deployment test is conducted to verify the capacity of the drive assembly.The test device consists of a large-area solar array system and a root hinge drive assembly.The RHDA development time is about 43 s.The theoretical drive torque is compared with the test values which are obtained according to the current data and the reduction efficiency analysis,and the results show that the presented model and the calibration methods are proper enough.展开更多
Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying contro...Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying control network simulation optimization design is proposed. This method is based on the inner reliability index of the observation values.展开更多
Recently, a considerable emphasis has been laid to the reliability-based optimization model for water distribution systems. But a considerable computational effort is needed to determine the reliability-based optimal ...Recently, a considerable emphasis has been laid to the reliability-based optimization model for water distribution systems. But a considerable computational effort is needed to determine the reliability-based optimal design of large networks, even of mid-sized networks. A new methodology which consists of two procedures is presented in this paper. The first procedure is that the optimal design is constrained only by the pressure heads at demand nodes, done in GRG2. Because the reliability constrains are removed from the optimal problem, a number of simulations do not need to be conducted and the computer time is greatly decreased. Then, the second procedure is a linear optimal search procedure. In this linear procedure, the optimal results obtained by GRG2 are adjusted by the reliability constrains. The results are a group of commercial diameters of pipes and the constraints of pressure heads and reliability at nodes are satisfied. Therefore, the computer burden is significantly decreased, and the reliability-based optimization is of more practical use.展开更多
Reliability optimization plays an important role in design, operation and management of the industrial systems. System reliability can be easily enhanced by improving the reliability of unreliable components and/or by...Reliability optimization plays an important role in design, operation and management of the industrial systems. System reliability can be easily enhanced by improving the reliability of unreliable components and/or by using redundant configuration with subsystems/components in parallel. Redundancy Allocation Problem (RAP) was studied in this research. A mixed integer programming model was proposed to solve the problem, which considers simultaneously two objectives under several resource constraints. The model is only for the hierarchical series-parallel systems in which the elements of any subset of subsystems or components are connected in series or parallel and constitute a larger subsystem or total system. At the end of the study, the performance of the proposed approach was evaluated by a numerical example.展开更多
Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures an...Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution.展开更多
文摘Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.
基金supported by the National Defense Pre-research Project in the 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.
文摘This paper establishes a mathematical model of the reliability optimization design for the safe-arming system of an air-faced missile, and presents a solving method for the model. The computational results provide a valuable reference for the reliability design for the safe-arming system of an air-faced missile.
文摘Failure of a safety critical system can lead to big losses. Very high software reliability is required for automating the working of systems such as aircraft controller and nuclear reactor controller software systems. Fault-tolerant softwares are used to increase the overall reliability of software systems. Fault tolerance is achieved using the fault-tolerant schemes such as fault recovery (recovery block scheme), fault masking (N-version programming (NVP)) or a combination of both (Hybrid scheme). These softwares incorporate the ability of system survival even on a failure. Many researchers in the field of software engineering have done excellent work to study the reliability of fault-tolerant systems. Most of them consider the stable system reliability. Few attempts have been made in reliability modeling to study the reliability growth for an NVP system. Recently, a model was proposed to analyze the reliability growth of an NVP system incorporating the effect of fault removal efficiency. In this model, a proportion of the number of failures is assumed to be a measure of fault generation while an appropriate measure of fault generation should be the proportion of faults removed. In this paper, we first propose a testing efficiency model incorporating the effect of imperfect fault debugging and error generation. Using this model, a software reliability growth model (SRGM) is developed to model the reliability growth of an NVP system. The proposed model is useful for practical applications and can provide the measures of debugging effectiveness and additional workload or skilled professional required. It is very important for a developer to determine the optimal release time of the software to improve its performance in terms of competition and cost. In this paper, we also formulate the optimal software release time problem for a 3VP system under fuzzy environment and discuss a the fuzzy optimization technique for solving the problem with a numerical illustration.
文摘Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement of elements (components) in the system. To avoid serious failures for such complex systems, recourse can be had to the redundancy techniques available in the literature. These techniques help to improve system reliability, without affecting the reliability of system components. This paper is interested in the proposal of a model for evaluating the failure rate of a standby multi-components system and in improving the reliability of mechanical systems, arranged in a topology (series, parallel, or mixed).
文摘If the components in a component-based software system come from different sources, the characteristics of the components may be different. Therefore, evaluating the reliability of a component-based system with a fixed model for all components will not be reasonable. To solve this problem, this paper combines a single reliability growth model with an architecture-based reliability model, and proposes an optimal selecting approach. First, the most appropriate model of each component is selected according to the historical reliability data of the component, so that the evaluation deviation is the smallest. Then, system reliability is evaluated according to both the relationships among components and the using frequency of each component. As the approach takes into account the historical data and the using frequency of each component, the evaluation and prediction results are more accurate than those of using a single model.
基金financed with the means of Yingkou Institute of Technology Introduction of doctors to start the fund project (YJRC202109).
文摘For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears.
文摘Environmental stress screening (ESS) is a technological process to reduce the costly early field failure of electronic components. This paper builds an optimization model for ESS of electronic components to obtain the optimal ESS duration. The failure phenomena of ESS are modeled by mixed distribution, and optimal ESS duration is defined by maximizing life-cycle cost savings under the condition of meeting reliability requirement.
文摘Testing-time when a change of a stochastic characteristic of the software failure-occurrence time or software failure-occurrence time-interval is observed is called change-point. It is said that effect of the change-point on the software reliability growth process influences on accuracy for software reliability assessment based on a software reliability growth model (SRGM). We propose an SRGM with the effect of the change-point based on a bivariate SRGM, in which the software reliability growth process is assumed to depend on the testing-time and testing-effort factors simultaneously, for accurate software reliability assessment. And we discuss an optimal software release problem for deriving optimal testing-effort expenditures based on our model. Further, we show numerical examples of software reliability assessment based on our bivariate SRGM and estimation of optimal testing-effort expenditures by using actual data.
文摘The development and application of new reliability models and methods are presented to analyze the system relia- bility of complex condition monitoring systems.The methods include a method analyzing failure modes of a type of redundant con- dition monitoring systems (RCMS) by invoking failure tree model,Markov modeling techniques for analyzing system reliability of RCMS,and methods for estimating Markov model parameters.Furthermore,a computing case is investigated and many conclu- sions upon this case are summarized.Results show that the method proposed here is practical and valuable for designing condition monitoring systems and their maintenance.
基金Sponsored by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20020213017).
文摘According to the consequences of software failures, software faults remaining in safety-critical systems can be classified into two sets: common faults and fatal faults. Common faults cause slight loss when they are activated. A fatal fault can lead to significant loss, and even damage the safety-crltical system entirely when it is activated. A software reliability growth model for safety-critical systems is developed based on G - 0 model. And a software cost model is proposed too. The cost model considers maintenance and risk costs due to software failures. The optimal release policies are discussed to minimize the total software cost. A numerical exampie is provided to illustrate how to use the results we obtained.
文摘This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.
文摘In this study, we develop a new meta-heuristic-based approach to solve a multi-objective optimization problem, namely the reliability-redundancy allocation problem (RRAP). Further, we develop a new simulation process to generate practical tools for designing reliable series-parallel systems. Because the?RRAP is an NP-hard problem, conventional techniques or heuristics cannot be used to find the optimal solution. We propose a genetic algorithm (GA)-based hybrid meta-heuristic algorithm, namely the hybrid genetic algorithm (HGA), to find the optimal solution. A simulation process based on the HGA is developed to obtain different alternative solutions that are required to generate application tools for optimal design of reliable series-parallel systems. Finally, a practical case study regarding security control of a gas turbine in the overspeed state is presented to validate the proposed algorithm.
文摘Reliability, maintainability and testability (RMT) are important properties of equipment, since they have important influ- ence on operational availability and life cycle costs (LCC). There- fore, weighting and optimizing the three properties are of great significance. A new approach for optimization of RMT parameters is proposed. First of all, the model for the equipment operation pro- cess is established based on the generalized stochastic Petri nets (GSPN) theory. Then, by solving the GSPN model, the quantitative relationship between operational availability and RMT parameters is obtained. Afterwards, taking history data of similar equipment and operation process into consideration, a cost model of design, manufacture and maintenance is developed. Based on operational availability, the cost model and parameters ranges, an optimization model of RMT parameters is built. Finally, the effectiveness and practicability of this approach are validated through an example.
文摘The contribution deals with the optimization of a sequential preventive maintenance schedule of a technical device. We are given an initial time-to-failure probability distribution, model of changes of this distribution after maintenance actions, as well as the costs of maintenance, of a device acquisition, and of the impact of failure. The maintenance timing and, eventually, its extent, are the matter of optimization. The objective of the contribution is two-fold: first, to formulate a proper (random) objective function evaluating the lifetime of the maintained device relatively to maintenance costs;second, to propose a numerical method searching for a maintenance policy optimizing selected characteristics of this objective function. The method is based on the MCMC random search combined with simulated annealing. It is also shown that such a method is rather universal for different problem specifications. The approach will be illustrated on an artificial example dealing with accelerated lifetime after each maintenance action.
基金Supported by National Natural Science Foundation of China(Grant Nos.51125020,51105013)the Innovation Foundation of Beihang University for PhD Graduates
文摘A root hinge drive assembly is preferred in place of the classical viscous damper in a large solar array system.It has advantages including better deployment control and higher reliability.But the traditional single degree of freedom model should be improved.A multiple degrees of freedom dynamics model is presented for the solar arrays deployment to guide the drive assembly design.The established model includes the functions of the torsion springs,the synchronization mechanism and the lock-up impact.A numerical computation method is proposed to solve the dynamics coupling problem.Then considering the drive torque requirement calculated by the proposed model,a root hinge drive assembly is developed based on the reliability engineering design methods,and dual actuators are used as a redundancy design.Pseudo-efficiency is introduced and the major factors influencing the(pseudo-)efficiency of the gear mechanism designed with high reduction ratio are studied for further test data analysis.A ground prototype deployment test is conducted to verify the capacity of the drive assembly.The test device consists of a large-area solar array system and a root hinge drive assembly.The RHDA development time is about 43 s.The theoretical drive torque is compared with the test values which are obtained according to the current data and the reduction efficiency analysis,and the results show that the presented model and the calibration methods are proper enough.
文摘Surveying control network optimization design is related to standards, such as precision, reliability, sensitivity and the cost, and these standards are related closely to each other. A new method for surveying control network simulation optimization design is proposed. This method is based on the inner reliability index of the observation values.
文摘Recently, a considerable emphasis has been laid to the reliability-based optimization model for water distribution systems. But a considerable computational effort is needed to determine the reliability-based optimal design of large networks, even of mid-sized networks. A new methodology which consists of two procedures is presented in this paper. The first procedure is that the optimal design is constrained only by the pressure heads at demand nodes, done in GRG2. Because the reliability constrains are removed from the optimal problem, a number of simulations do not need to be conducted and the computer time is greatly decreased. Then, the second procedure is a linear optimal search procedure. In this linear procedure, the optimal results obtained by GRG2 are adjusted by the reliability constrains. The results are a group of commercial diameters of pipes and the constraints of pressure heads and reliability at nodes are satisfied. Therefore, the computer burden is significantly decreased, and the reliability-based optimization is of more practical use.
文摘Reliability optimization plays an important role in design, operation and management of the industrial systems. System reliability can be easily enhanced by improving the reliability of unreliable components and/or by using redundant configuration with subsystems/components in parallel. Redundancy Allocation Problem (RAP) was studied in this research. A mixed integer programming model was proposed to solve the problem, which considers simultaneously two objectives under several resource constraints. The model is only for the hierarchical series-parallel systems in which the elements of any subset of subsystems or components are connected in series or parallel and constitute a larger subsystem or total system. At the end of the study, the performance of the proposed approach was evaluated by a numerical example.
基金The authors are grateful to the financial support from National Natural Science Foundation of China(No.52078086)Postdoctoral innovative talents support program,Chongqing(Grant No.CQBX2021022)Financial support from China Southwest Geotechnical Investigation&Design Institute Co.,Ltd(C2021-0264).
文摘Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution.