Discrete software reliability measurement has a proper characteristic for describing a software reliability growth process which depends on a unit of the software fault-detection period, such as the number of test run...Discrete software reliability measurement has a proper characteristic for describing a software reliability growth process which depends on a unit of the software fault-detection period, such as the number of test runs, the number of executed test cases. This paper discusses discrete software reliability measurement based on a discretized nonhomogeneous Poisson process (NHPP) model. Especially, we use a bootstrapping method in our discrete software reliability measurement for discussing the statistical inference on parameters and software reliability assessment measures of our model. Finally we show numerical examples of interval estimations based on our bootstrapping method for the several software reliability assessment measures by using actual data.展开更多
The coefficient of reliability is often estimated from a sample that includes few subjects. It is therefore expected that the precision of this estimate would be low. Measures of precision such as bias and variance de...The coefficient of reliability is often estimated from a sample that includes few subjects. It is therefore expected that the precision of this estimate would be low. Measures of precision such as bias and variance depend heavily on the assumption of normality, which may not be tenable in practice. Expressions for the bias and variance of the reliability coefficient in the one and two way random effects models using the multivariate Taylor’s expansion have been obtained under the assumption of normality of the score (Atenafu et al. [1]). In the present paper we derive analytic expressions for the bias and variance, hence the mean square error when the measured responses are not normal under the one-way data layout. Similar expressions are derived in the case of the two-way data layout. We assess the effect of departure from normality on the sample size requirements and on the power of Wald’s test on specified hypotheses. We analyze two data sets, and draw comparisons with results obtained via the Bootstrap methods. It was found that the estimated bias and variance based on the bootstrap method are quite close to those obtained by the first order approximation using the Taylor’s expansion. This is an indication that for the given data sets the approximations are quite adequate.展开更多
文摘Discrete software reliability measurement has a proper characteristic for describing a software reliability growth process which depends on a unit of the software fault-detection period, such as the number of test runs, the number of executed test cases. This paper discusses discrete software reliability measurement based on a discretized nonhomogeneous Poisson process (NHPP) model. Especially, we use a bootstrapping method in our discrete software reliability measurement for discussing the statistical inference on parameters and software reliability assessment measures of our model. Finally we show numerical examples of interval estimations based on our bootstrapping method for the several software reliability assessment measures by using actual data.
文摘The coefficient of reliability is often estimated from a sample that includes few subjects. It is therefore expected that the precision of this estimate would be low. Measures of precision such as bias and variance depend heavily on the assumption of normality, which may not be tenable in practice. Expressions for the bias and variance of the reliability coefficient in the one and two way random effects models using the multivariate Taylor’s expansion have been obtained under the assumption of normality of the score (Atenafu et al. [1]). In the present paper we derive analytic expressions for the bias and variance, hence the mean square error when the measured responses are not normal under the one-way data layout. Similar expressions are derived in the case of the two-way data layout. We assess the effect of departure from normality on the sample size requirements and on the power of Wald’s test on specified hypotheses. We analyze two data sets, and draw comparisons with results obtained via the Bootstrap methods. It was found that the estimated bias and variance based on the bootstrap method are quite close to those obtained by the first order approximation using the Taylor’s expansion. This is an indication that for the given data sets the approximations are quite adequate.