The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir...The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
Land acquisition is subject of many frauds worldwide. In Africa countries, land acquisition frauds are a real curse. Main reasons of the high land acquisition frauds in Africa are a lack of a reliable land acquisition...Land acquisition is subject of many frauds worldwide. In Africa countries, land acquisition frauds are a real curse. Main reasons of the high land acquisition frauds in Africa are a lack of a reliable land acquisition protocol implementation, no centralized information system that records land transactions and integrates all actors, lack of education about the acquisition protocol and lack of applied sanctions in case of frauds. As of sanctions, the issue is bound to the corruption plague in Africa. Authorities that are supposed to rule the laws are not well paid and are part of the corruption scheme. Most frequent frauds are multiple sales of the same land, falsified land title, false owner identification. In Africa, a land belongs generally to the first residents of the area. To claim ownership of a land, an owner should be recognized by the rural or city authorities. To achieve this recognition, he must obtain from those authorities an attribution letter. The author proposed a complete and reliable land acquisition protocol named ACLAP (Africa Countries Land Acquisition Protocol). The purpose of this paper is to explain the main components of the protocol implementation and show its efficiency when confronting fraud threats. In this paper, a Generic and Reliable Land Acquisition Protocol Implementation in Sub-Saharan Africa countries context is proposed. The platform keeps relevant land transaction information for administrators, managers, buyers, sellers, or for people consultation purpose. The application may be used in village, city, department, region, or country for land management decision making.展开更多
Reliability,QoS and energy consumption are three important concerns of cloud service providers.Most of the current research on reliable task deployment in cloud computing focuses on only one or two of the three concer...Reliability,QoS and energy consumption are three important concerns of cloud service providers.Most of the current research on reliable task deployment in cloud computing focuses on only one or two of the three concerns.However,these three factors have intrinsic trade-off relationships.The existing studies show that load concentration can reduce the number of servers and hence save energy.In this paper,we deal with the problem of reliable task deployment in data centers,with the goal of minimizing the number of servers used in cloud data centers under the constraint that the job execution deadline can be met upon single server failure.We propose a QoS-Constrained,Reliable and Energy-efficient task replica deployment(QSRE)algorithm for the problem by combining task replication and re-execution.For each task in a job that cannot finish executing by re-execution within deadline,we initiate two replicas for the task:main task and task replica.Each main task runs on an individual server.The associated task replica is deployed on a backup server and completes part of the whole task load before the main task failure.Different from the main tasks,multiple task replicas can be allocated to the same backup server to reduce the energy consumption of cloud data centers by minimizing the number of servers required for running the task replicas.Specifically,QSRE assigns the task replicas with the longest and the shortest execution time to the backup servers in turn,such that the task replicas can meet the QoS-specified job execution deadline under the main task failure.We conduct experiments through simulations.The experimental results show that QSRE can effectively reduce the number of servers used,while ensuring the reliability and QoS of job execution.展开更多
We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, ma...We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.展开更多
Since entering the era of Industry 4.0,the concept of Healthcare 4.0 has also been put forward and explored by researchers.How to use Information Technology(IT)to better serve people’s healthcare is one of the most f...Since entering the era of Industry 4.0,the concept of Healthcare 4.0 has also been put forward and explored by researchers.How to use Information Technology(IT)to better serve people’s healthcare is one of the most featured emerging directions in the academic circle.An important field of Healthcare 4.0 research is the reliability engineering of healthcare service.Because healthcare systems often affect the health and even life of their users,developers must be very cautious in the design,development,and operation of these healthcare systems and services.The problems to be solved include the reliability of business process,system functions,and personal healthcare data.The Functional Resonance Analysis Method(FRAM)has been applied in reliability engineering for safety-critical systems in available studies,using both qualitative and quantitative approaches.However,the method has not been applied in the field of digital healthcare services development.Therefore,to narrow the gap,we present in this paper a semi-quantitative functional resonance analysis method to develop reliable healthcare services for diabetics.Moreover,this paper has tried to improve the reliability design of the service-oriented architecture(SOA)of traditional insulin pump therapy by system thinking.展开更多
Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the en...Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.展开更多
Recently,various privacy-preserving schemes have been proposed to resolve privacy issues in federated learning(FL).However,most of them ignore the fact that anomalous users holding low-quality data may reduce the accu...Recently,various privacy-preserving schemes have been proposed to resolve privacy issues in federated learning(FL).However,most of them ignore the fact that anomalous users holding low-quality data may reduce the accuracy of trained models.Although some existing works manage to solve this problem,they either lack privacy protection for users’sensitive information or introduce a two-cloud model that is difficult to find in reality.A reliable and privacy-preserving FL scheme named reliable and privacy-preserving federated learning(RPPFL)based on a single-cloud model is proposed.Specifically,inspired by the truth discovery technique,we design an approach to identify the user’s reliability and thereby decrease the impact of anomalous users.In addition,an additively homomorphic cryptosystem is utilized to provide comprehensive privacy preservation(user’s local gradient privacy and reliability privacy).We give rigorous theoretical analysis to show the security of RPPFL.Based on open datasets,we conduct extensive experiments to demonstrate that RPPEL compares favorably with existing works in terms of efficiency and accuracy.展开更多
In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to dif...In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.展开更多
The research of congestion control for Internet reliable multicast is one of the most active fields in reliable multicast protocol research. Many reliable multicast congestion control mechanisms have been put forward....The research of congestion control for Internet reliable multicast is one of the most active fields in reliable multicast protocol research. Many reliable multicast congestion control mechanisms have been put forward. In this paper we present principal problems of congestion control for Internet reliable multicast, analyze solutions and difficulties of solving these problems, and then give a classification of some reliable multicast congestion control mechanisms. Lastly the future work is proposed.展开更多
Purpose:To determine the intra-tester reliability of clinical measurements that assess five components related to core stability:strength. endurance,flexibility,motor control,and function. Methods:Participants were 15...Purpose:To determine the intra-tester reliability of clinical measurements that assess five components related to core stability:strength. endurance,flexibility,motor control,and function. Methods:Participants were 15 college-aged males who had not suffered any orthopedic injury in the past year.Core strength measurements included eight isometric tests and a sit-up test.The four core endurance tests were the trunk flexor test,trunk extensor test,and bilateral side bridge tests.Flexibility tests included the sit-and-reach test and active range of the trunk and hip joint motions.Proprioception via passive reposition tests of the hips and a single limb balance test on an unsteady platform were used to evaluate core motor control.Functional measurements consisted of a squat test and a single leg hop test for time and distance.Measurements were performed during two data collection sessions with a week’s rest between the sessions.Intra-class correlation coefficients were calculated to establish reliability. Results:The overall intra-rater reliability for all core stability related measurements ranged from low(ICC = 0.35,left hip reposition) to very high(ICC = 0.98,sit-and-reach).As a group,the core endurance tests were observed to be the most reliable. Conclusion:There are highly reliable tests in each of the five groups.Overall,core endurance tests are the most reliable measurements,followed by the flexibility,strength,neuromuscular control,and functional tests,respectively.展开更多
The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties...The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.展开更多
The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actu...The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actuator faults that can be modeled by a scaling factor. The resulting control systems are reliable in that they provide guaranteed asymptotic stability and H∞ performance when some control component (actuator) faults occur. A numerical example is also given to illustrate the design procedure and their effectiveness. Furthermore, the optimal standard controller and the optimal reliable controller are compared to show the necessity of reliable control.展开更多
Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic char...Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic characteristics to increase the network reliability.Some people research network coding schemes for inter-flow or intra-flow,each type with its own advantages and disadvantages.In this paper,we propose a new mechanism,called MM-NCOPE,which integrates the idea of inter-flow and intra-flow coding.On the one hand,MM-NCOPE utilizes random liner coding to encode the NCOPE packets while NCOPE is a sub-protocol for optimizing the COPE algorithm by iteration.In NCOPE,packets are automatically matched by size to be coded.As a result,it improves the coding gain in some level.On the other hand,we adopt the partial Acknowledgement retransmission scheme to achieve high compactness and robustness.ACK is an independent packet with the highest priority rather than a part of the data packets.Compared with existing works on opportunistic network coding,our approach ensures the reliability of wireless links and improves the coding gain.展开更多
Owing to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for underwater sensor networks. Moreover, network coding is proved to be an effect...Owing to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for underwater sensor networks. Moreover, network coding is proved to be an effective coding technique for throughput and robustness of networks. In this paper, we propose a Reliable Braided Multipath Routing with Network Coding for underwater sensor networks (RBMR-NC). Disjoint multi-path algorithm is used to build independent actual paths, as called main paths. Some braided paths on each main path are built according to the braided multi-path algorithm, which are called logic paths. When a data packet is transmitted by these nodes, the nodes can employ network coding to encode packets coming from the same group in order to further reduce relativity among these packets, and enhance the probability of successful decoding at the sink node. Braided multi-path can make the main paths to be multiplexed to reduce the probability of long paths. This paper mainly employs successful delivery rate to evaluate RBMR-NC model with theoretical analysis and simulation methods. The results indicate that the proposed RBMR-NC protocol is valuable to enhance network reliability and to reduce system redundancy.展开更多
Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop pr...Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.展开更多
The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and n...The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.展开更多
In wireless ad hoe network environments, every link is wireless and every node is mobile. Those features make data lost easily as well as multicasting inefficient and unreliable. Moreover, Efficient and reliable multi...In wireless ad hoe network environments, every link is wireless and every node is mobile. Those features make data lost easily as well as multicasting inefficient and unreliable. Moreover, Efficient and reliable multicast in wireless ad hoe network is a difficult issue. It is a major challenge to transmission delays and packet losses due to link changes of a multicast tree at the provision of high delivery ratio for each packet transmission in wireless ad hoe network environment. In this paler, we propose and evaluate Reliable Adaptive Multicast Protocol (RAMP) based on a relay node concept. Relay nodes are placed along the multieast tree. Data recovery is done between relay nodes. RAMP supports a reliable multicasting suitable for mobile ad hoe network by reducing the number of packet retransmissions. We compare RAMP with SRM (Scalable Reliable Multicast). Simulation results show that the RAMP has high delivery ratio and low end-to-end delay for packet transmsission.展开更多
In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative ac...In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.展开更多
To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system wi...To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.展开更多
基金supported by NSFC project(grant No.61971359)Chongqing Municipal Key Laboratory of Institutions of Higher Education(grant No.cquptmct-202104)+1 种基金Fundamental Research Funds for the Central Universities,Sichuan Science and Technology Project(grant no.2021YFQ0053)State Key Laboratory of Rail Transit Engineering Informatization(FSDI).
文摘The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
文摘Land acquisition is subject of many frauds worldwide. In Africa countries, land acquisition frauds are a real curse. Main reasons of the high land acquisition frauds in Africa are a lack of a reliable land acquisition protocol implementation, no centralized information system that records land transactions and integrates all actors, lack of education about the acquisition protocol and lack of applied sanctions in case of frauds. As of sanctions, the issue is bound to the corruption plague in Africa. Authorities that are supposed to rule the laws are not well paid and are part of the corruption scheme. Most frequent frauds are multiple sales of the same land, falsified land title, false owner identification. In Africa, a land belongs generally to the first residents of the area. To claim ownership of a land, an owner should be recognized by the rural or city authorities. To achieve this recognition, he must obtain from those authorities an attribution letter. The author proposed a complete and reliable land acquisition protocol named ACLAP (Africa Countries Land Acquisition Protocol). The purpose of this paper is to explain the main components of the protocol implementation and show its efficiency when confronting fraud threats. In this paper, a Generic and Reliable Land Acquisition Protocol Implementation in Sub-Saharan Africa countries context is proposed. The platform keeps relevant land transaction information for administrators, managers, buyers, sellers, or for people consultation purpose. The application may be used in village, city, department, region, or country for land management decision making.
文摘Reliability,QoS and energy consumption are three important concerns of cloud service providers.Most of the current research on reliable task deployment in cloud computing focuses on only one or two of the three concerns.However,these three factors have intrinsic trade-off relationships.The existing studies show that load concentration can reduce the number of servers and hence save energy.In this paper,we deal with the problem of reliable task deployment in data centers,with the goal of minimizing the number of servers used in cloud data centers under the constraint that the job execution deadline can be met upon single server failure.We propose a QoS-Constrained,Reliable and Energy-efficient task replica deployment(QSRE)algorithm for the problem by combining task replication and re-execution.For each task in a job that cannot finish executing by re-execution within deadline,we initiate two replicas for the task:main task and task replica.Each main task runs on an individual server.The associated task replica is deployed on a backup server and completes part of the whole task load before the main task failure.Different from the main tasks,multiple task replicas can be allocated to the same backup server to reduce the energy consumption of cloud data centers by minimizing the number of servers required for running the task replicas.Specifically,QSRE assigns the task replicas with the longest and the shortest execution time to the backup servers in turn,such that the task replicas can meet the QoS-specified job execution deadline under the main task failure.We conduct experiments through simulations.The experimental results show that QSRE can effectively reduce the number of servers used,while ensuring the reliability and QoS of job execution.
文摘We designed, assembled, and tested a reliable laser system for ^(87)Rb cold atom fountain clocks. The laser system is divided into four modules according to function, which are convenient for installing, adjusting, maintaining, and replacing of the modules. In each functional module, all optical components are fixed on a baseplate with glue and screws, ensuring the system's structural stability. Mechanical stability was verified in a 6.11g RMS randomvibration test, where the change in output power before and after vibration was less than 5%. Thermal stability was realized by optimizing of the structure and appropriate selection of component materials of the modules through thermal simulation. In the laser splitting and output module, the change in laser power was less than 20% for each fiber in thermal cycles from 5℃ to 43℃. Finally,the functionality of the laser system was verified for a rubidium fountain clock.
文摘Since entering the era of Industry 4.0,the concept of Healthcare 4.0 has also been put forward and explored by researchers.How to use Information Technology(IT)to better serve people’s healthcare is one of the most featured emerging directions in the academic circle.An important field of Healthcare 4.0 research is the reliability engineering of healthcare service.Because healthcare systems often affect the health and even life of their users,developers must be very cautious in the design,development,and operation of these healthcare systems and services.The problems to be solved include the reliability of business process,system functions,and personal healthcare data.The Functional Resonance Analysis Method(FRAM)has been applied in reliability engineering for safety-critical systems in available studies,using both qualitative and quantitative approaches.However,the method has not been applied in the field of digital healthcare services development.Therefore,to narrow the gap,we present in this paper a semi-quantitative functional resonance analysis method to develop reliable healthcare services for diabetics.Moreover,this paper has tried to improve the reliability design of the service-oriented architecture(SOA)of traditional insulin pump therapy by system thinking.
基金fund received from Department of Science and Technology,Govt.of India,grant no.DST/CERI/MI/SG/2017/080(AU)(G).
文摘Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.
基金supported in part by the Fundamental Research Funds for Central Universities under Grant No.2022RC006in part by the National Nat⁃ural Science Foundation of China under Grant Nos.62201029 and 62202051+2 种基金in part by the BIT Research and Innovation Promoting Project under Grant No.2022YCXZ031in part by the Shandong Provincial Key Research and Development Program under Grant No.2021CXGC010106in part by the China Postdoctoral Science Foundation under Grant Nos.2021M700435,2021TQ0042,2021TQ0041,BX20220029 and 2022M710007.
文摘Recently,various privacy-preserving schemes have been proposed to resolve privacy issues in federated learning(FL).However,most of them ignore the fact that anomalous users holding low-quality data may reduce the accuracy of trained models.Although some existing works manage to solve this problem,they either lack privacy protection for users’sensitive information or introduce a two-cloud model that is difficult to find in reality.A reliable and privacy-preserving FL scheme named reliable and privacy-preserving federated learning(RPPFL)based on a single-cloud model is proposed.Specifically,inspired by the truth discovery technique,we design an approach to identify the user’s reliability and thereby decrease the impact of anomalous users.In addition,an additively homomorphic cryptosystem is utilized to provide comprehensive privacy preservation(user’s local gradient privacy and reliability privacy).We give rigorous theoretical analysis to show the security of RPPFL.Based on open datasets,we conduct extensive experiments to demonstrate that RPPEL compares favorably with existing works in terms of efficiency and accuracy.
文摘In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.
文摘The research of congestion control for Internet reliable multicast is one of the most active fields in reliable multicast protocol research. Many reliable multicast congestion control mechanisms have been put forward. In this paper we present principal problems of congestion control for Internet reliable multicast, analyze solutions and difficulties of solving these problems, and then give a classification of some reliable multicast congestion control mechanisms. Lastly the future work is proposed.
文摘Purpose:To determine the intra-tester reliability of clinical measurements that assess five components related to core stability:strength. endurance,flexibility,motor control,and function. Methods:Participants were 15 college-aged males who had not suffered any orthopedic injury in the past year.Core strength measurements included eight isometric tests and a sit-up test.The four core endurance tests were the trunk flexor test,trunk extensor test,and bilateral side bridge tests.Flexibility tests included the sit-and-reach test and active range of the trunk and hip joint motions.Proprioception via passive reposition tests of the hips and a single limb balance test on an unsteady platform were used to evaluate core motor control.Functional measurements consisted of a squat test and a single leg hop test for time and distance.Measurements were performed during two data collection sessions with a week’s rest between the sessions.Intra-class correlation coefficients were calculated to establish reliability. Results:The overall intra-rater reliability for all core stability related measurements ranged from low(ICC = 0.35,left hip reposition) to very high(ICC = 0.98,sit-and-reach).As a group,the core endurance tests were observed to be the most reliable. Conclusion:There are highly reliable tests in each of the five groups.Overall,core endurance tests are the most reliable measurements,followed by the flexibility,strength,neuromuscular control,and functional tests,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)the Science and Technology Development Project of Shaanxi Province,China(Grant No.2010KJXX-02)+2 种基金the Program for New Century Excellent Talents in University,China(Grant No.NCET-08-0455)the Foundation of State Key Lab of Acoustics,China(Grant No.SKLOA201101)the Doctorate Foundation of Northwestern Polytechnical University,China(Grant No.CX201226)
文摘The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.
基金This project was supported by the Education Foundation of liaoning province (ECL-202263357)
文摘The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actuator faults that can be modeled by a scaling factor. The resulting control systems are reliable in that they provide guaranteed asymptotic stability and H∞ performance when some control component (actuator) faults occur. A numerical example is also given to illustrate the design procedure and their effectiveness. Furthermore, the optimal standard controller and the optimal reliable controller are compared to show the necessity of reliable control.
基金National Natural Science Foundation of China under Grant No. 60903196,60903175National Critical Patented Projects in the Next Generation Broadband Wireless Mobile Communication Network under Grant No. 2010ZX03006-001-01+1 种基金National High Technical Research and Development Program of China under Grant No. 2009AA01Z418Educational Commission of Hubei Province of China under Grant No. D20114401
文摘Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic characteristics to increase the network reliability.Some people research network coding schemes for inter-flow or intra-flow,each type with its own advantages and disadvantages.In this paper,we propose a new mechanism,called MM-NCOPE,which integrates the idea of inter-flow and intra-flow coding.On the one hand,MM-NCOPE utilizes random liner coding to encode the NCOPE packets while NCOPE is a sub-protocol for optimizing the COPE algorithm by iteration.In NCOPE,packets are automatically matched by size to be coded.As a result,it improves the coding gain in some level.On the other hand,we adopt the partial Acknowledgement retransmission scheme to achieve high compactness and robustness.ACK is an independent packet with the highest priority rather than a part of the data packets.Compared with existing works on opportunistic network coding,our approach ensures the reliability of wireless links and improves the coding gain.
基金supported by the National Natural Science Foundation of China (Grant Nos.60472060 and 60473039)the National High Technology Research and Development Programof China (863 Program,Grant No.2006AA01Z119)the Innovation Fund of Chinese Academy of Space Technology (Grant No.CAST20090801)
文摘Owing to the long propagation delay and high error rate of acoustic channels, it is very challenging to provide reliable data transfer for underwater sensor networks. Moreover, network coding is proved to be an effective coding technique for throughput and robustness of networks. In this paper, we propose a Reliable Braided Multipath Routing with Network Coding for underwater sensor networks (RBMR-NC). Disjoint multi-path algorithm is used to build independent actual paths, as called main paths. Some braided paths on each main path are built according to the braided multi-path algorithm, which are called logic paths. When a data packet is transmitted by these nodes, the nodes can employ network coding to encode packets coming from the same group in order to further reduce relativity among these packets, and enhance the probability of successful decoding at the sink node. Braided multi-path can make the main paths to be multiplexed to reduce the probability of long paths. This paper mainly employs successful delivery rate to evaluate RBMR-NC model with theoretical analysis and simulation methods. The results indicate that the proposed RBMR-NC protocol is valuable to enhance network reliability and to reduce system redundancy.
基金supported by Natural Science and Engineering Research Council (NSERC) of Canada
文摘Reliability-based design optimization (RBDO) is intrinsically a double-loop procedure since it involves an overall optimization and an iterative reliability assessment at each search point. Due to the double-loop procedure, the computational expense of RBDO is normally very high. Current RBDO research focuses on problems with explicitly expressed performance functions and readily available gradients. This paper addresses a more challenging type of RBDO problem in which the performance functions are computation intensive. These computation intensive functions are often considered as a "black-box" and their gradients are not available or not reliable. On the basis of the reliable design space (RDS) concept proposed earlier by the authors, this paper proposes a Reliable Space Pursuing (RSP) approach, in which RDS is first identified and then gradually refined while optimization is performed. It fundamentally avoids the nested optimization and probabilistic assessment loop. Three well known RBDO problems from the literature are used for testing and demonstrating the effectiveness of the proposed RSP method.
基金supported by the National Natural Science Foundation of China (60564001)the Program for New Century Excellent Talentsin University (NCET-06-0756)
文摘The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.
文摘In wireless ad hoe network environments, every link is wireless and every node is mobile. Those features make data lost easily as well as multicasting inefficient and unreliable. Moreover, Efficient and reliable multicast in wireless ad hoe network is a difficult issue. It is a major challenge to transmission delays and packet losses due to link changes of a multicast tree at the provision of high delivery ratio for each packet transmission in wireless ad hoe network environment. In this paler, we propose and evaluate Reliable Adaptive Multicast Protocol (RAMP) based on a relay node concept. Relay nodes are placed along the multieast tree. Data recovery is done between relay nodes. RAMP supports a reliable multicasting suitable for mobile ad hoe network by reducing the number of packet retransmissions. We compare RAMP with SRM (Scalable Reliable Multicast). Simulation results show that the RAMP has high delivery ratio and low end-to-end delay for packet transmsission.
基金supported by the National Natural Science Fandation of China (6067208960772075)
文摘In consultative committee for space data systems(CCSDS) file delivery protocol(CFDP) recommendation of reliable transmission,there are no detail transmission procedure and delay calculation of prompted negative acknowledge and asynchronous negative acknowledge models.CFDP is designed to provide data and storage management,story and forward,custody transfer and reliable end-to-end delivery over deep space characterized by huge latency,intermittent link,asymmetric bandwidth and big bit error rate(BER).Four reliable transmission models are analyzed and an expected file-delivery time is calculated with different trans-mission rates,numbers and sizes of packet data units,BERs and frequencies of external events,etc.By comparison of four CFDP models,the requirement of BER for typical missions in deep space is obtained and rules of choosing CFDP models under different uplink state informations are given,which provides references for protocol models selection,utilization and modification.
基金the National Natural Science Foundation of China (60574088,60274014).
文摘To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.