Every day we receive a large amount of information through different social media and software,and this data and information can be realized with the advent of data mining methods.In the process of data mining,to solv...Every day we receive a large amount of information through different social media and software,and this data and information can be realized with the advent of data mining methods.In the process of data mining,to solve some high-dimensional problems,feature selection is carried out in limited training samples,and effective features are selected.This paper focuses on two Relief feature selection algorithms:Relief and ReliefF algorithm.The differences between them and their respective applicable scopes are analyzed.Based on Relief algorithm,the high weight feature subset is obtained,and the correlation between features is calculated according to the mutual information distance measure,and the high redundant features are removed to obtain the feature subset with higher quality.Experimental results on six datasets show the effectiveness of our method.展开更多
针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据...针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据进行分类时,该方法构造的分类器在预测精度和运行时间上均有较大幅度的提升。展开更多
文摘Every day we receive a large amount of information through different social media and software,and this data and information can be realized with the advent of data mining methods.In the process of data mining,to solve some high-dimensional problems,feature selection is carried out in limited training samples,and effective features are selected.This paper focuses on two Relief feature selection algorithms:Relief and ReliefF algorithm.The differences between them and their respective applicable scopes are analyzed.Based on Relief algorithm,the high weight feature subset is obtained,and the correlation between features is calculated according to the mutual information distance measure,and the high redundant features are removed to obtain the feature subset with higher quality.Experimental results on six datasets show the effectiveness of our method.
文摘针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据进行分类时,该方法构造的分类器在预测精度和运行时间上均有较大幅度的提升。