Planation surfaces (PS) play a major role in reconstruction of the evolutionary history of landforms in local areas. Thus, objective and consistent mapping of planation surfaces from remotely sensed data (e.g., sat...Planation surfaces (PS) play a major role in reconstruction of the evolutionary history of landforms in local areas. Thus, objective and consistent mapping of planation surfaces from remotely sensed data (e.g., satellite imagery, digital elevation models (DEMs)) is paramount for interpreting the geomorphological evolution. Due to the lack of dated sedimentary covers and the difficulties of com-prehensive field work, the number and age of planation surfaces in the Southwest Hubei (湖北) Prov-ince of China are still controversial. In order to map the PS in the study area, four data visualization techniques including ETM+ false color composite, grey-scale DEM, shaded relief model (SRM) and painted relief model (P M) were examined. It is found that the PRM is the most optimal technique for planation surface mapping. The study area was successfully mapped by visual interpretation of a PRM derived from ASTER GDEM. The mapped PS was divided into five classes in terms of elevation ac-cording to previous studies, varying from 1 700-2 000 (PS1), 1 300-1 500 (PS2), 1 000-1 200 (PS3), 800-900 (PS4) to 500-600 (PS5) m. The results were partially compared with the published works. It is revealed that this method of mapping enjoys a higher accuracy and can reduce the time and ef- fort required in the traditional mapping to a large extent. The results also demonstrated that the PRM is an effective tool for geomorphological fea-ture mapping with considerable accuracy. The pre- liminary results can serve to facilitate locating rep-resentative samples for the planation surfaces dating, thus to determine the ages of PS in the study areas.展开更多
针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据...针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据进行分类时,该方法构造的分类器在预测精度和运行时间上均有较大幅度的提升。展开更多
The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults...The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.展开更多
The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary me...The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.展开更多
基金supported by the National Basic Research Program of China (No. 2011CB710600)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGL100211)the National Natural Science Foundation of China (No. 91014002)
文摘Planation surfaces (PS) play a major role in reconstruction of the evolutionary history of landforms in local areas. Thus, objective and consistent mapping of planation surfaces from remotely sensed data (e.g., satellite imagery, digital elevation models (DEMs)) is paramount for interpreting the geomorphological evolution. Due to the lack of dated sedimentary covers and the difficulties of com-prehensive field work, the number and age of planation surfaces in the Southwest Hubei (湖北) Prov-ince of China are still controversial. In order to map the PS in the study area, four data visualization techniques including ETM+ false color composite, grey-scale DEM, shaded relief model (SRM) and painted relief model (P M) were examined. It is found that the PRM is the most optimal technique for planation surface mapping. The study area was successfully mapped by visual interpretation of a PRM derived from ASTER GDEM. The mapped PS was divided into five classes in terms of elevation ac-cording to previous studies, varying from 1 700-2 000 (PS1), 1 300-1 500 (PS2), 1 000-1 200 (PS3), 800-900 (PS4) to 500-600 (PS5) m. The results were partially compared with the published works. It is revealed that this method of mapping enjoys a higher accuracy and can reduce the time and ef- fort required in the traditional mapping to a large extent. The results also demonstrated that the PRM is an effective tool for geomorphological fea-ture mapping with considerable accuracy. The pre- liminary results can serve to facilitate locating rep-resentative samples for the planation surfaces dating, thus to determine the ages of PS in the study areas.
文摘针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据进行分类时,该方法构造的分类器在预测精度和运行时间上均有较大幅度的提升。
文摘The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.
基金supported by the National Natural Science Foundation of China 71371181 91024006China Postdoctoral Science Foundation (2012M521918)
文摘The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.