期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ReliefF特征量优化及BP神经网络识别的高压隔离开关故障类型与位置诊断方法 被引量:25
1
作者 张一茗 李少华 +5 位作者 陈士刚 高群伟 宋亚凯 张文涛 李洪涛 关永刚 《高压电器》 CAS CSCD 北大核心 2018年第2期12-19,共8页
针对高压隔离开关机械故障的类型和发生位置难以有效识别的问题,提出了一种将隔离开关多路振动特征利用Relief F算法进行优化然后利用BP神经网络进行融合决策的故障诊断方法。首先进行试验模拟故障,在隔离开关本体和操动机构上分布式安... 针对高压隔离开关机械故障的类型和发生位置难以有效识别的问题,提出了一种将隔离开关多路振动特征利用Relief F算法进行优化然后利用BP神经网络进行融合决策的故障诊断方法。首先进行试验模拟故障,在隔离开关本体和操动机构上分布式安装振动传感器,采集不同位置振动信号;然后将多个传感器采集的振动信号进行经验模态分解,得到固有模态函数,分别计算能量距,并把多路信号的能量距进行融合。最后使用Relief F算法对其进行特征筛选,构成BP神经网络的输入特征向量,从而实现故障类型、位置诊断。试验结果表明,多路传感器融合特征向量相比于单路信号提取的特征,对隔离开关不同的故障具有较好的识别能力,可诊断出故障发生的种类及位置,提高了诊断准确率。 展开更多
关键词 高压隔离开关 能量矩 特征融合 relieff优化 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部