期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
混合改进的花授粉算法与灰狼算法用于特征选择 被引量:5
1
作者 康雁 王海宁 +4 位作者 陶柳 杨海潇 杨学昆 王飞 李浩 《计算机科学》 CSCD 北大核心 2022年第S01期125-132,共8页
特征选择在数据预处理阶段中极为重要。特征选择的优劣不仅影响着神经网络训练的时间长短,更影响神经网络性能的好坏。灰狼改进花授粉算法(Grey Wolf Improved Flower Pollination Algorithm,GIFPA)是一种基于花授粉算法(Flower Pollina... 特征选择在数据预处理阶段中极为重要。特征选择的优劣不仅影响着神经网络训练的时间长短,更影响神经网络性能的好坏。灰狼改进花授粉算法(Grey Wolf Improved Flower Pollination Algorithm,GIFPA)是一种基于花授粉算法(Flower Pollination Algorithm,FPA)框架与灰狼优化算法融合的混合算法,将其应用于特征选择问题,既可以保留原始特征的内涵信息,又可以最大化分类特征的准确率。GIFPA算法在花授粉算法的异花授粉阶段中加入了最差个体信息,并用作全局搜索,将灰狼优化算法中的狩猎过程作为局部搜索,并且通过转换系数来调节二者的搜索过程。同时,为了克服群智能算法易陷入局部最优的问题,首次采用数据挖掘领域中的RelifF算法,通过RelifF算法过滤出高权重特征并用于改进最佳个体信息。为了验证算法的性能,实验选取UCI数据库中21个领域的经典数据集进行测试,利用K近邻(KNN)分类器进行分类测评,以适应度值和准确率作为评价标准,并通过K-折交叉验证来克服过拟合问题。实验选择了包括FPA算法在内的多种经典算法和先进算法进行比较,结果表明GIFPA算法在特征选择问题上有很强的竞争力。 展开更多
关键词 特征选择 FPA算法 灰狼算法 reliff 优化器
下载PDF
Combining flame monitoring techniques and support vector machine for the online identification of coal blends
2
作者 Hao ZHOU Yuan LI +2 位作者 Qi TANG Gang LU Yong YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第9期677-689,共13页
The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variableoperating conditions was monitored by a flame monitoring system based on image processing and spectral ana... The combustion behavior of two single coals and three coal blends in a 300 kW coal-fired furnace under variableoperating conditions was monitored by a flame monitoring system based on image processing and spectral analysis. A similaritycoefficient was defined to analyze the similarity of combustion behavior between two different coal types. A total of 20 flamefeatures, extracted by the flame monitoring system, were ranked by weights of their importance estimated using ReliefF, a featureselection algorithm. The mean of the infrared signal was found to have by far the highest importance weight among the flamefeatures. Support vector machine (SVM) was used to identify the coal types. The number of flame features used to build the SVMmodel was reduced from 20 to 12 by combining the methods of ReliefF and SVM, and computational precision was guaranteedsimultaneously. A threshold was found for the relationship between the error rate and similarity coefficient, which were positivelycorrelated. The success rate decreased with increasing similarity coefficient. The results obtained demonstrate that the system canachieve the online" identification of coal blends in industry. 展开更多
关键词 COAL BLENDS FLAME monitoring Online identification reliff Support VECTOR machine (SVM) SIMILARITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部