The yangtze River Three Gorges Project is the largest water-conservancy project in the world. After its completion in 2009, its total installed capacity Will be 18.25 million kW With an annual power generation of 84. ...The yangtze River Three Gorges Project is the largest water-conservancy project in the world. After its completion in 2009, its total installed capacity Will be 18.25 million kW With an annual power generation of 84. 7 billion kWh. The total storage capacity will be 39.3 billion cubic meters, and the anti-flood storage capacity Will be 22. 15 billion cubic meters. The project will effectively control flooding along the Y8ngtZe River protect 1.53 million hectares of land, protect the life and property of 15 million people in the middle and lower reaches of the Yangtze River and improve the river’s transportation capacity Many are concerned about the inhabitants in the reservoir area who have to be relocated. According to statistics, over the 17-year construction period, 1.038 million Chongqing people will be relocated, comprising 85 percent of the total number of people who have to be relocated. Such grand scale relocation has rarely been seen in the history of China and the world. To gain a better understanding of the relocation process, staff reporter Wang Xin visited some relocated settlements and interviewed Gan Yuping, vice mayor of Chongqing Municipality and head of the relocation project.展开更多
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni...The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.展开更多
North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan Count...North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan County, Dezhou City, in Shandong Province, China. This earthquake was the largest in the eastern North China Craton(NCC) since the Tangshan earthquake of 1976. Due to the absence of surface ruptures, the fault responsible for the Pingyuan Mw5.5 earthquake remains unclear. To reveal the subsurface geological structure near the earthquake epicenter, this study utilized highresolution two-dimensional seismic reflection profiles to interpret pre-existing faults.展开更多
On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault ...On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence.展开更多
The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been repor...The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake.展开更多
Upper mantle earthquakes are usually associated with plate boundary tectonics, but rarely occur beneath intracontinental orogenic belts. In the Moroccan Atlas Mountains, earthquakes determined at subcrustal depths are...Upper mantle earthquakes are usually associated with plate boundary tectonics, but rarely occur beneath intracontinental orogenic belts. In the Moroccan Atlas Mountains, earthquakes determined at subcrustal depths are a controversial topic because they are few in number compared to subduction zones and are not related to plate boundary tectonics. A recent increase of broadband stations in Morocco has revealed numerous events below the Atlas belts, thought to occur from the upper mantle. Using additional available stations, these Atlas events were relocated and new epicenter resolutions were acquired following rigorous depth and RMS error criteria. 309 events were reprocessed and epicenter depths obtained were between 31 and 240 km during the last 23 years. Temporal variations of High Atlas events appear to be continually dipping while Anti Atlas events show no temporal variation trends. In addition, a recent strong event M6.8 occurred in September 2023 at the transition crust-uppermost mantle followed by several aftershocks which have been relocated at uppermost mantle depths. These events support delamination model under the High-Middle Atlas which could flow southward beneath the Anti Atlas lithosphere, and explain the large variation observed in lithosphere thickness between the High-Middle Atlas, and the Anti Atlas. Subcrustal events beneath the Atlas may be related to upper mantle earthquakes beneath the neighboring Canary Islands which have experienced recent swarms and eruptions. This possible correlation cannot be excluded since descending and ascending material is necessary for a regional geodynamic balance.展开更多
The significant relocation of supply chains from China to ASEAN countries did not start with the pandemic.China has been steadily increasing its investment in ASEAN's low valueadded manufacturing sector due to the...The significant relocation of supply chains from China to ASEAN countries did not start with the pandemic.China has been steadily increasing its investment in ASEAN's low valueadded manufacturing sector due to the region's comparative advantage in labor costs.In recent years,changing geopolitics and the restructuring of regional economies in the Asia-Pacific region have accelerated this relocation.展开更多
"3,000 yuan per month,"proclaimed Abdulaziz Mehmet,a Uygur worker at Dena Shoes Factory in Kargilik County of Xinjiang Uygur Autonomous Region.Why is it noteworthy?Bangkok's minimum wage in 2024 is US$32..."3,000 yuan per month,"proclaimed Abdulaziz Mehmet,a Uygur worker at Dena Shoes Factory in Kargilik County of Xinjiang Uygur Autonomous Region.Why is it noteworthy?Bangkok's minimum wage in 2024 is US$327.65,while Jakarta is US$332.92.Mehmet is earning significantly more than what he would getin either of the national capitals.展开更多
The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc...The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.展开更多
Train rails are associated with environmental and safety risks, often concentrating industry near their yards and rails. ArcGIS was applied to map the rail network, land uses, and industrial sites in Point Douglas and...Train rails are associated with environmental and safety risks, often concentrating industry near their yards and rails. ArcGIS was applied to map the rail network, land uses, and industrial sites in Point Douglas and St. Boniface in Winnipeg, Canada. We identified 123 land uses with vulnerable populations needing assistance in evacuation from hospitals, senior living facilities, schools and early childhood centres within a buffer of two km of the rails and conducted hotspot analysis. About two-fifths of the total population, 39% in Point Douglas and 40% in St. Boniface, are at risk from fire, spill or train derailment involving dangerous goods and requiring evacuations or isolation.展开更多
A new method, named relocation, was proposed to reduce the impact of sensor errors systematically, especially whenavailable data of sensors are abundant. The procedure includes evaluating the reliability of every sens...A new method, named relocation, was proposed to reduce the impact of sensor errors systematically, especially whenavailable data of sensors are abundant. The procedure includes evaluating the reliability of every sensors datum, processing the initiallocation by the credible data, and selecting a set of equations with optimal noise tolerance according to the relative relationshipbetween the initial location and sensors location, then calculating the final location by k-mean voting. The results obtained in thisresearch include comparing traditional location method with the presented method in both simulation and field experiment. In thefield experiment, the location error of relocation method reduced 41.8% compared with traditional location method. The resultssuggested that relocation method can improve the fault-tolerant performance significantly.展开更多
By investigating present relocation residential districts for peasants whose houses are removed for the unified planning of rural areas in north Jiangsu Province, as well as residents' feelings about the environme...By investigating present relocation residential districts for peasants whose houses are removed for the unified planning of rural areas in north Jiangsu Province, as well as residents' feelings about the environment of residential district, main architectural structures and energy consumption conditions, the indoor thermal environment, use of main heating and cooling facilities, residents' satisfaction on the acoustical and luminous environment, major space-enclosing structures and calculation of energy-saving designs are analyzed, and suggestions are given for the architectural design of relocation residential districts in the study area. It is stressed that the relationship between energy conservation and architectural layout, orientation, lighting, ventilation, selection of enclosing-structure materials, facade, color and style should be properly handled in the planning, and the focus is to control building orientation and shape coefficient, on the basis of which energy-saving designs of windows, exterior walls and roofs can be done. Energy consumption of present residential buildings is calculated and analyzed to bring forth new ideas to the energy-saving designs for relocation residential districts in north Jiangsu Province, and establish an architectural energy-saving system suitable for climatic and natural conditions of north Jiangsu to instruct the energy-saving designs of relocation residential districts in the study area.展开更多
Locating an earthquakes focal depth is always a key project in seismology. Precise focal depth is of critical importance for evaluating seismic hazards, deciphering dynamic mechanisms of earthquake generating,estima...Locating an earthquakes focal depth is always a key project in seismology. Precise focal depth is of critical importance for evaluating seismic hazards, deciphering dynamic mechanisms of earthquake generating,estimating aftershock evolutions and risk,as well as monitoring nuclear tests. However,how we determine an accurate focal depth is always a challenge in seismological studies. Aiming to solve these problems, we analyzed and summarized the present status and the future development of earthquake focal depth locating. In this paper we first reviewed the present status of focal depth locating in the world,and summarized the frequently-used relocating methods and ideas at present,and introduced two types of focal depth relocating ideas: arrival time relocating and waveform modeling methods. For these ideas,we systematically described the S-P and the Pn-Pg methods that belong to arrival time method,and polarization focal depth locating and amplitude focal depth locating that belongs to waveform modeling,and further analyzed the advantages and limitations of these methods. Since the depth phase methods are highly sensitive to focal depth,and are relatively free from the uncertainties of crustal models,we mainly reviewed the depth phases of s Pm P,s PL,s Pn,and s Sn,and quantitatively evaluated their availabilities and characteristics. Second,we also discussed the effects of crustal velocity models on the reliability of focal depth locating,and reviewed the advancements of seismic tomography techniques over recent years. Finally,based on the present status of the progress on the focal depth locating,and studies of seismic velocity structures,we proposed an idea of combining multiple datasets and relocating methods,jointly utilizing seismologic and geodetic techniques to relocate focal depth,which should be the major research field in investigating focal depth and source parameters in the near future.展开更多
Based on the construction property of rolled compacted concrete, three-dimensional finite element relocating mesh method was developed in simulating construction process and computing temperature and stress field. Usi...Based on the construction property of rolled compacted concrete, three-dimensional finite element relocating mesh method was developed in simulating construction process and computing temperature and stress field. Using this method, the temperature and the thermal stress fields developed in the RCC gravity dam of the Longtan project with or without a longitudinal joint during construction and operation are calculated so as to simulate the construction process. The computation results show that the value of the thermal stresses developed in the dam even, without any longitudinal joint, could meet the design criteria provided the placement temperature is adequately controlled.展开更多
According to the construction characteristic of RCC dam cast by layers, three-dimensional finite element relocating mesh method is developed to simulate construction process and compute temperature field. The computat...According to the construction characteristic of RCC dam cast by layers, three-dimensional finite element relocating mesh method is developed to simulate construction process and compute temperature field. The computation model of relocating mesh method is expatiated in detail; based on the thermodynamic properties of RCC materials, the feasibility and error of relocating mesh method are analyzed and demonstrated; The computation results in this article are verified by means of the temperature observation data of certain RCC gravity dam. The results show that the temperature field computed by three-dimensional finite element relocating mesh method can not only ensure the computation precision, but also improve the calculation efficiency greatly. This provides an effective method for simulating construction process and computing temperature field of RCC dam.展开更多
In this paper, regarding the actual conditions of a roller compacted concrete dam, three-dimensional finite element relocating mesh method is utilized to simulate and calculate the temperature field of the RCC dam dur...In this paper, regarding the actual conditions of a roller compacted concrete dam, three-dimensional finite element relocating mesh method is utilized to simulate and calculate the temperature field of the RCC dam during the construction stage and operating period. The calculation is well consistent with the actual construction process, the thin-layer pouring process the pouring temperature and all kinds of external loads involved being taken into account, By comparing and analyzing of the impact of the cold wave on the dam stress, important references are provided for the RCCD design and the temperature control during construction.展开更多
This paper analyses the impact of the poverty alleviation relocation(PAR)program on rural household income and evaluates the heterogeneous income effects of various relocation modes,based on a panel dataset of relocat...This paper analyses the impact of the poverty alleviation relocation(PAR)program on rural household income and evaluates the heterogeneous income effects of various relocation modes,based on a panel dataset of relocated households from 16 counties in eight Chinese provinces.The results show that participation in the PAR increases the income of both rural and urban resettlers.More specifically,it has a significant positive effect on agricultural and wage income for rural and urban resettlers,respectively.Further analyses show that the income increase for rural resettlers was mainly due to agricultural technology training and that the income increase for town resettlers was attributed to medical security.For the village resettlers,policies should focus on strengthening the development of local industries and training of agricultural technologies.For the urban resettlers,non-agricultural employment and public services in the urban resettlement areas should be promoted.展开更多
An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, w...An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.展开更多
文摘The yangtze River Three Gorges Project is the largest water-conservancy project in the world. After its completion in 2009, its total installed capacity Will be 18.25 million kW With an annual power generation of 84. 7 billion kWh. The total storage capacity will be 39.3 billion cubic meters, and the anti-flood storage capacity Will be 22. 15 billion cubic meters. The project will effectively control flooding along the Y8ngtZe River protect 1.53 million hectares of land, protect the life and property of 15 million people in the middle and lower reaches of the Yangtze River and improve the river’s transportation capacity Many are concerned about the inhabitants in the reservoir area who have to be relocated. According to statistics, over the 17-year construction period, 1.038 million Chongqing people will be relocated, comprising 85 percent of the total number of people who have to be relocated. Such grand scale relocation has rarely been seen in the history of China and the world. To gain a better understanding of the relocation process, staff reporter Wang Xin visited some relocated settlements and interviewed Gan Yuping, vice mayor of Chongqing Municipality and head of the relocation project.
文摘The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.
文摘North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan County, Dezhou City, in Shandong Province, China. This earthquake was the largest in the eastern North China Craton(NCC) since the Tangshan earthquake of 1976. Due to the absence of surface ruptures, the fault responsible for the Pingyuan Mw5.5 earthquake remains unclear. To reveal the subsurface geological structure near the earthquake epicenter, this study utilized highresolution two-dimensional seismic reflection profiles to interpret pre-existing faults.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.42130312 and 4198810101)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK07)
文摘On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence.
基金supported from the National Natural Science Foundation of China(No.42374081)the Fundamental Research Funds for the Institute of Geophysics,China Earthquake Administration(Nos.DQJB23B22,DQJB22K36 and DQJB23Z04)Hong Research Grants Council(Nos.14306122 and 14308523)。
文摘The 6 August 2023 M_(W)5.5 Pingyuan earthquake is the largest earthquake in the central North China Plain(NCP)over the past two decades.Due to the thick sedimentary cover,no corresponding active faults have been reported yet in the epicenter area.Thus,this earthquake presents a unique opportunity to delve into the buried active faults beneath the NCP.By integrating strong ground motion records,high-precision aftershock sequence relocation,and focal mechanism solutions,we gain insights into the seismotectonics of the Pingyuan earthquake.The aftershocks are clustered at depths ranging from 15 to 20 km and delineate a NE-SW trend,consistent with the distribution of ground motion records.A NE-SW nodal plane(226°)of the focal mechanism solutions is also derived from regional waveform inversion,suggesting that the mainshock was dominated by strike-slip motion with minor normal faulting component.Integrating regional geological data,we propose that an unrecognized fault between the NE-SW trending Gaotang and Lingxian-Yangxin faults is the seismogenic fault of this event.Based on the S-wave velocity structure beneath the NCP,this fault probably extends into the lower crust with a high angle.Considering the tectonic regime and stress state,we speculate that the interplay of shear strain between the Amurian and South China blocks and the hot upwelling magma from the subducted paleo Pacific flat slab significantly contributed to the generation of the Pingyuan earthquake.
文摘Upper mantle earthquakes are usually associated with plate boundary tectonics, but rarely occur beneath intracontinental orogenic belts. In the Moroccan Atlas Mountains, earthquakes determined at subcrustal depths are a controversial topic because they are few in number compared to subduction zones and are not related to plate boundary tectonics. A recent increase of broadband stations in Morocco has revealed numerous events below the Atlas belts, thought to occur from the upper mantle. Using additional available stations, these Atlas events were relocated and new epicenter resolutions were acquired following rigorous depth and RMS error criteria. 309 events were reprocessed and epicenter depths obtained were between 31 and 240 km during the last 23 years. Temporal variations of High Atlas events appear to be continually dipping while Anti Atlas events show no temporal variation trends. In addition, a recent strong event M6.8 occurred in September 2023 at the transition crust-uppermost mantle followed by several aftershocks which have been relocated at uppermost mantle depths. These events support delamination model under the High-Middle Atlas which could flow southward beneath the Anti Atlas lithosphere, and explain the large variation observed in lithosphere thickness between the High-Middle Atlas, and the Anti Atlas. Subcrustal events beneath the Atlas may be related to upper mantle earthquakes beneath the neighboring Canary Islands which have experienced recent swarms and eruptions. This possible correlation cannot be excluded since descending and ascending material is necessary for a regional geodynamic balance.
文摘The significant relocation of supply chains from China to ASEAN countries did not start with the pandemic.China has been steadily increasing its investment in ASEAN's low valueadded manufacturing sector due to the region's comparative advantage in labor costs.In recent years,changing geopolitics and the restructuring of regional economies in the Asia-Pacific region have accelerated this relocation.
文摘"3,000 yuan per month,"proclaimed Abdulaziz Mehmet,a Uygur worker at Dena Shoes Factory in Kargilik County of Xinjiang Uygur Autonomous Region.Why is it noteworthy?Bangkok's minimum wage in 2024 is US$327.65,while Jakarta is US$332.92.Mehmet is earning significantly more than what he would getin either of the national capitals.
文摘The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.
文摘Train rails are associated with environmental and safety risks, often concentrating industry near their yards and rails. ArcGIS was applied to map the rail network, land uses, and industrial sites in Point Douglas and St. Boniface in Winnipeg, Canada. We identified 123 land uses with vulnerable populations needing assistance in evacuation from hospitals, senior living facilities, schools and early childhood centres within a buffer of two km of the rails and conducted hotspot analysis. About two-fifths of the total population, 39% in Point Douglas and 40% in St. Boniface, are at risk from fire, spill or train derailment involving dangerous goods and requiring evacuations or isolation.
基金Projects(11472311,41272304,51504288)supported by the National Natural Science Foundation of China
文摘A new method, named relocation, was proposed to reduce the impact of sensor errors systematically, especially whenavailable data of sensors are abundant. The procedure includes evaluating the reliability of every sensors datum, processing the initiallocation by the credible data, and selecting a set of equations with optimal noise tolerance according to the relative relationshipbetween the initial location and sensors location, then calculating the final location by k-mean voting. The results obtained in thisresearch include comparing traditional location method with the presented method in both simulation and field experiment. In thefield experiment, the location error of relocation method reduced 41.8% compared with traditional location method. The resultssuggested that relocation method can improve the fault-tolerant performance significantly.
基金Supported by Talent-Introduction Scientific Research Program of Yancheng Institute of Technology(XKR2011078)~~
文摘By investigating present relocation residential districts for peasants whose houses are removed for the unified planning of rural areas in north Jiangsu Province, as well as residents' feelings about the environment of residential district, main architectural structures and energy consumption conditions, the indoor thermal environment, use of main heating and cooling facilities, residents' satisfaction on the acoustical and luminous environment, major space-enclosing structures and calculation of energy-saving designs are analyzed, and suggestions are given for the architectural design of relocation residential districts in the study area. It is stressed that the relationship between energy conservation and architectural layout, orientation, lighting, ventilation, selection of enclosing-structure materials, facade, color and style should be properly handled in the planning, and the focus is to control building orientation and shape coefficient, on the basis of which energy-saving designs of windows, exterior walls and roofs can be done. Energy consumption of present residential buildings is calculated and analyzed to bring forth new ideas to the energy-saving designs for relocation residential districts in north Jiangsu Province, and establish an architectural energy-saving system suitable for climatic and natural conditions of north Jiangsu to instruct the energy-saving designs of relocation residential districts in the study area.
基金supported by a grant from the National Earthquake Predicting Field in Sichuan and Yunnan(No.2016CESE0204).
文摘Locating an earthquakes focal depth is always a key project in seismology. Precise focal depth is of critical importance for evaluating seismic hazards, deciphering dynamic mechanisms of earthquake generating,estimating aftershock evolutions and risk,as well as monitoring nuclear tests. However,how we determine an accurate focal depth is always a challenge in seismological studies. Aiming to solve these problems, we analyzed and summarized the present status and the future development of earthquake focal depth locating. In this paper we first reviewed the present status of focal depth locating in the world,and summarized the frequently-used relocating methods and ideas at present,and introduced two types of focal depth relocating ideas: arrival time relocating and waveform modeling methods. For these ideas,we systematically described the S-P and the Pn-Pg methods that belong to arrival time method,and polarization focal depth locating and amplitude focal depth locating that belongs to waveform modeling,and further analyzed the advantages and limitations of these methods. Since the depth phase methods are highly sensitive to focal depth,and are relatively free from the uncertainties of crustal models,we mainly reviewed the depth phases of s Pm P,s PL,s Pn,and s Sn,and quantitatively evaluated their availabilities and characteristics. Second,we also discussed the effects of crustal velocity models on the reliability of focal depth locating,and reviewed the advancements of seismic tomography techniques over recent years. Finally,based on the present status of the progress on the focal depth locating,and studies of seismic velocity structures,we proposed an idea of combining multiple datasets and relocating methods,jointly utilizing seismologic and geodetic techniques to relocate focal depth,which should be the major research field in investigating focal depth and source parameters in the near future.
文摘Based on the construction property of rolled compacted concrete, three-dimensional finite element relocating mesh method was developed in simulating construction process and computing temperature and stress field. Using this method, the temperature and the thermal stress fields developed in the RCC gravity dam of the Longtan project with or without a longitudinal joint during construction and operation are calculated so as to simulate the construction process. The computation results show that the value of the thermal stresses developed in the dam even, without any longitudinal joint, could meet the design criteria provided the placement temperature is adequately controlled.
文摘According to the construction characteristic of RCC dam cast by layers, three-dimensional finite element relocating mesh method is developed to simulate construction process and compute temperature field. The computation model of relocating mesh method is expatiated in detail; based on the thermodynamic properties of RCC materials, the feasibility and error of relocating mesh method are analyzed and demonstrated; The computation results in this article are verified by means of the temperature observation data of certain RCC gravity dam. The results show that the temperature field computed by three-dimensional finite element relocating mesh method can not only ensure the computation precision, but also improve the calculation efficiency greatly. This provides an effective method for simulating construction process and computing temperature field of RCC dam.
文摘In this paper, regarding the actual conditions of a roller compacted concrete dam, three-dimensional finite element relocating mesh method is utilized to simulate and calculate the temperature field of the RCC dam during the construction stage and operating period. The calculation is well consistent with the actual construction process, the thin-layer pouring process the pouring temperature and all kinds of external loads involved being taken into account, By comparing and analyzing of the impact of the cold wave on the dam stress, important references are provided for the RCCD design and the temperature control during construction.
基金supported by the National Natural Science Foundation of China(71861147002 and 71761147004)supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(20XHN086)。
文摘This paper analyses the impact of the poverty alleviation relocation(PAR)program on rural household income and evaluates the heterogeneous income effects of various relocation modes,based on a panel dataset of relocated households from 16 counties in eight Chinese provinces.The results show that participation in the PAR increases the income of both rural and urban resettlers.More specifically,it has a significant positive effect on agricultural and wage income for rural and urban resettlers,respectively.Further analyses show that the income increase for rural resettlers was mainly due to agricultural technology training and that the income increase for town resettlers was attributed to medical security.For the village resettlers,policies should focus on strengthening the development of local industries and training of agricultural technologies.For the urban resettlers,non-agricultural employment and public services in the urban resettlement areas should be promoted.
基金supported by National Natural Science Foundation of China(Nos.40974201 and 40774044)to J.Lei
文摘An earthquake with Ms5.8 occurred on 10 March 2011 in Yingjiang county, western Yunnan, China. This earthquake caused 25 deaths and over 250 injuries. In order to better understand the seismotectonics in the region, we collected the arrival time data from the Yunnan seismic observational bulletins during 1 January to 25 March 2011, and precisely hand-picked the arrival times from high-quality seismograms that were recorded by the temporary seismic stations deployed by our Institute of Crustal Dynamics, China Earthquake Administration. Using these arrival times, we relocated all the earthquakes including the Yingjiang mainshock and its aftershocks using the double-difference relocation algorithm. Our results show that the relocated earthquakes dominantly occurred along the ENE direction and formed an upside-down bow-shaped structure in depth. It is also observed that after the Yingjiang mainshock, some aftershocks extended toward the SSE over about 10 km. These results may indicate that the Yingjiang mainshock ruptured a conjugate fault system consisting of the ENE trending Da Yingjiang fault and a SSE trending blind fault. Such structural features could contribute to severely seismic hazards during the moderate-size Yingjiang earthquake.