The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along ...The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier.展开更多
A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, com...A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.展开更多
The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluc...The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.展开更多
The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in t...The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.展开更多
In order to improve the reliability in torque calculation of SRM,an accurate nonlinear torque model regresses by recursive robust least squares support vector regression(RR-LSSVR)is proposed in this paper.The model is...In order to improve the reliability in torque calculation of SRM,an accurate nonlinear torque model regresses by recursive robust least squares support vector regression(RR-LSSVR)is proposed in this paper.The model is in terms of a segmented-rotor switched reluctance motor(SSRM).The characteristics of the SSRM is introduced to show its nonlinear characteristics both in magnetic and torque.Then,its mathematic model is established,and an accurate inductance measurement method and a torque calculation method are presented.After this,the principle of the RR-LSSVR and why it can adjust weights according to errors are described.The model used the RR-LSSVR algorithm shows an outstanding capability in accuracy and quickness compared with other algorithms.Finally,to further validate the accuracy of the proposed model in practical application,simulation and experiment are designed based on a 16/10 SSRM.展开更多
The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.Ho...The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor.展开更多
In order to reduce the torque ripple,increase the average torque and optimize the drive performance of the switched reluctance motor (SRM),the nonlinear dynamic model of SRM is established in the MATLAB /Simulink envi...In order to reduce the torque ripple,increase the average torque and optimize the drive performance of the switched reluctance motor (SRM),the nonlinear dynamic model of SRM is established in the MATLAB /Simulink environment.The effects of the turn-on and turn-off angles are investigated by the simulation results of the dynamic model,and the function is made among the rotor speed,turn-on angle and turn-off angle.To optimize the torque dynamic performance,the two-objective simultaneous optimization function is proposed by two weight factors.And the optimized turn-on and turn-off angles as functions of rotor speed are developed by using the simultaneous optimization method.Then the optimized torque controller is designed based on the optimized turn-on and turn-off angles.The simulation results show that the optimized torque controller designed in this paper can effectively reduce the torque ripple and increase the average torque,and optimize the torque dynamic performance of the SRM.展开更多
This paper deals with an analytical method to effectively calculate the inductance of an exterior-rotor switched reluctance motor(SRM),which evaluates the winding inductance of both the active section and the end sect...This paper deals with an analytical method to effectively calculate the inductance of an exterior-rotor switched reluctance motor(SRM),which evaluates the winding inductance of both the active section and the end section,accounting for the influence of core saturation.According to the inductance calculated by the analytical model,the flux linkage table and torque table can be established,and the steady state performance such as phase current,flux linkage,copper loss and core loss can be predicted.Effectiveness of this method is verified by the finite element method as well as by experimental results of a 12/8 SRM prototype.展开更多
Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong...Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong candidate for high-speed driving fields. Under the circumstances, a 12/14 BSRM with hybrid stator pole has been proposed due to its high output torque density and excellent decoupling characteristics between torque and suspension force. However, this motor has torque dead-zone, which leads to problems of self-start at some rotor positions and large torque ripple during normal operation. To solve the existing problems in the 12/14 type, an asymmetric rotor pole type BSRM is proposed. The structure and design process of the proposed motor is presented in detail. The characteristics of the proposed motor is analyzed and compared with that of the 12/14 type. Furthermore, prototype of the proposed structure is designed, manufactured and experimented. Finally, simulation and test results are illustrated and analyzed to prove the validity of the proposed structure.展开更多
In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field an...In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field and electromagnetic torque.Iteration method is used to solve the relative permeability of iron core.A novel reluctance network model based on actual distribution of the magnetic flux inside the motor is established.The magnetomotive force(MMF)generated by armature winding affects the relative permeability of iron core,which is considered in the calculation of ERNM to improve the accuracy when the motor is under load.ERNM can be used to measure air-gap flux density,no-load back electromotive force(EMF),the average value of motor torque,the armature winding voltage under load,and power factor.The method of calculating the motor performance is proposed.The results of calculation are consistent with finite element method(FEM)and the computational complexity is much less than that of the FEM.The results of ERNM has been verified,which will provide a simple method for motor design and analysis.展开更多
In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher t...In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher torque density.Therefore,a new AM is proposed,in which the saturation of stator iron has been considered.The key of the proposed method includes a saturation factor,and an iterative method is adopted to compute the saturation factor in the SynRM by increasing the air-gap length.Especially,the proposed AM can be applied to a SynRM even with shifted-asymmetrical-salient-poles.In the process of AM,the expression of stator magnetomotive force(MMF)is built firstly.Additionally,the air-gap density including slotting effect and salient-poles is calculated.Then,the rotor MMF under saturation of the stator iron is obtained.Therefore,the precision of the instantaneous torque can be improved significantly.Eventually,by the verification of finite elements method(FEM)and experiments,the torque performance of SynRMs with shifted asymmetrical rotor can be predicted accurately by the proposed AM.展开更多
Although the five-degree-of-freedom magnetic levitation system composed of two conical bearingless switched reluctance motors(CBSRMs)owns the simplest structure,the torque and levitation forces are coupled greatly.The...Although the five-degree-of-freedom magnetic levitation system composed of two conical bearingless switched reluctance motors(CBSRMs)owns the simplest structure,the torque and levitation forces are coupled greatly.Therefore,it is difficult to make the rotor rotate and be fully levitated simultaneously.To solve this problem,two different role division control strategies are proposed in this paper,i.e.individual role division and mutual role division control strategies.The difference between them is the selection of motor which controls the torque or the axial force.In order to understand the characteristics of control variables,the principle and mathematical model of CBSRM are introduced.After that,two control strategies are explained in detail.To verify the demonstrated performance,the simulations are completed with MATLAB/Simulink.展开更多
Torque ripple is an inherent property of switched reluctance motor(SRM),which seriously affects the control performance and application of the motor.This paper proposes two torque ripple suppression control strategies...Torque ripple is an inherent property of switched reluctance motor(SRM),which seriously affects the control performance and application of the motor.This paper proposes two torque ripple suppression control strategies based on torque-sharing function(TSF).According to the symmetry characteristics of the flux linkage and rotor position curve family,a fourth-order Fourier series is used to fit the SRM flux linkage analytical model.The coefficient of each harmonic term of the flux linkage model is a function related to current,expressed by a sixth-order polynomial.The torque analytical formula can be derived from the flux linkage model.The torque error is calculated via the identified torque model and is compensated through TSF controller in order to reduce torque ripple.The torque model can also be used to establish the torque loop to achieve accurate tracking of the TSF reference torque to reduce torque ripple.Digital simulation was conducted,followed by the implementation on a SRM test bench using a 28335DSP as the master control chip.The experimental results are consistent with the simulation results,and indicate the effectiveness of the proposed schemes.展开更多
There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure ...There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure that incorporates concentrated windings on the stator poles and plain laminations of ferromagnetic material as a rotor.Due to this attributes,advances are being made rapidly with the consideration that SRM can be used as an alternative to DC motors and permanent magnet motors.The objective of this paper is to present an overview of the recent developments and a prediction of possible future advancements in SR Drives.Brief history,importance,innovations in structure and control,along with practical application examples are all discussed here to give a more in-depth comprehension of the motor.展开更多
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre...Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.展开更多
When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the to...When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the torque ripple and the stator phase current are larger.In order to resolve the above problems,through the analysis and deduction for SRM flux model and the influence of characteristics of flux and speed on torque ripple,this paper presents a variable-flux control strategy with the three closed-loop structure based on the critical flux supersaturated speed.And a DTC system of SRM with variable flux and three closed-loop is built up in Matlab/simulink.Moreover,the DSP hardware experiment platform based on the TMS320F2812 is established to validate the performance of the improved algorithm.The simulation and experimental results show that the new scheme has an obvious effect on torque ripple reduction,and the three-phase stator current is obviously reduced,which greatly reduces the stator winding copper consumption during the operation of SRM.Moreover,the improved system has good system stability.展开更多
This paper proposes an improved method for the prediction of radial vibration in switched reluctance motor(SRM)considering magnetic saturation.In this paper,the basic modeling principle is briefly introduced,it is bas...This paper proposes an improved method for the prediction of radial vibration in switched reluctance motor(SRM)considering magnetic saturation.In this paper,the basic modeling principle is briefly introduced,it is based on the derivation that the peak acceleration is dependent on the product of phase current and current gradient idi/dt.However,the derivation may cause errors due to saturation effect.Thus in this paper,the discrete sample data are firstly acquired based on DC pulse measurement method,by which electromagnetic,torque and peak acceleration characteristics can all be acquired.Then the entire peak acceleration characteristics are obtained by improved Least Square Support Vector Machine(LSSVM).Based on the obtained static peak acceleration characteristics,the time-varied radial vibration model is established based on superposition of natural oscillations of dominant vibration modes.Finally,a simulation model is built up using MATLAB/Simulink.The good agreement between simulation and experiment shows that the proposed method for modeling is feasible and accurate,even under saturation.In addition,since LSSVM does not need any prior knowledge,it is much easier for modeling compared with other existing literatures.展开更多
A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift curr...A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor (SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.展开更多
Discusses the inevitability of torque ripple of switched reluctance motor (SRM) for its double saliency construction and switch power supply, and the minimization of torque ripple, under traditional current chopping c...Discusses the inevitability of torque ripple of switched reluctance motor (SRM) for its double saliency construction and switch power supply, and the minimization of torque ripple, under traditional current chopping control mode, and presents a varying current amplitude chopping control method with a linear control model of varying current amplitude chopping shown, and the simulation of torque profiles under two kinds of current chopping control modes to demonstrate the validity of decreasing torque ripple.展开更多
基金supported by the National Natural Science Foundation of China under grant 52077122 and by the Taishan Industrial Experts Program.
文摘The mechanical strength of the synchronous reluctance motor(SynRM)has always been a great challenge.This paper presents an analysis method for assessing stress equivalence and magnetic bridge stress interaction,along with a multiobjective optimization approach.Considering the complex flux barrier structure and inevitable stress concentration at the bridge,the finite element model suitable for SynRM is established.Initially,a neural network structure with two inputs,one output,and three layers is established.Continuous functions are constructed to enhance accuracy.Additionally,the equivalent stress can be converted into a contour distribution of a three-dimensional stress graph.The contour line distribution illustrates the matching scheme for magnetic bridge lengths under equivalent stress.Moreover,the paper explores the analysis of magnetic bridge interaction stress.The optimization levels corresponding to the length of each magnetic bridge are defined,and each level is analyzed by the finite element method.The Taguchi method is used to determine the specific gravity of the stress source on each magnetic bridge.Based on this,a multiobjective optimization employing the Multiobjective Particle Swarm Optimization(MOPSO)technique is introduced.By taking the rotor magnetic bridge as the design parameter,ten optimization objectives including air-gap flux density,sinusoidal property,average torque,torque ripple,and mechanical stress are optimized.The relationship between the optimization objectives and the design parameters can be obtained based on the response surface method(RSM)to avoid too many experimental samples.The optimized model is compared with the initial model,and the optimized effect is verified.Finally,the temperature distribution of under rated working conditions is analyzed,providing support for addressing thermal stress as mentioned earlier.
文摘A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.
基金Supported by National Natural Science Foundation of China(Grant No.50975055)
文摘The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.
基金Project supported by the National Natural Science Foundation of China (Grant No 70571017)
文摘The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.
基金This work was supported by the National Natural Science Foundation of China under Project 51875261the Natural Science Foundation of Jiangsu Province of China under Projects BK20180046 and BK20170071the“Qinglan project”of Jiangsu Province,and the Key Project of Natural Science Foundation of Jiangsu Higher Education Institutions under Project 17KJA460005.
文摘In order to improve the reliability in torque calculation of SRM,an accurate nonlinear torque model regresses by recursive robust least squares support vector regression(RR-LSSVR)is proposed in this paper.The model is in terms of a segmented-rotor switched reluctance motor(SSRM).The characteristics of the SSRM is introduced to show its nonlinear characteristics both in magnetic and torque.Then,its mathematic model is established,and an accurate inductance measurement method and a torque calculation method are presented.After this,the principle of the RR-LSSVR and why it can adjust weights according to errors are described.The model used the RR-LSSVR algorithm shows an outstanding capability in accuracy and quickness compared with other algorithms.Finally,to further validate the accuracy of the proposed model in practical application,simulation and experiment are designed based on a 16/10 SSRM.
基金This work is supported by the National Natural Science Foundation of China(52077141)the Natural Science Foundation of Liaoning Province(2021-YQ-09)the Liaoning Bai Qian Wan Talents Program,China。
文摘The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor.
基金Sponsored by the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20092302120)
文摘In order to reduce the torque ripple,increase the average torque and optimize the drive performance of the switched reluctance motor (SRM),the nonlinear dynamic model of SRM is established in the MATLAB /Simulink environment.The effects of the turn-on and turn-off angles are investigated by the simulation results of the dynamic model,and the function is made among the rotor speed,turn-on angle and turn-off angle.To optimize the torque dynamic performance,the two-objective simultaneous optimization function is proposed by two weight factors.And the optimized turn-on and turn-off angles as functions of rotor speed are developed by using the simultaneous optimization method.Then the optimized torque controller is designed based on the optimized turn-on and turn-off angles.The simulation results show that the optimized torque controller designed in this paper can effectively reduce the torque ripple and increase the average torque,and optimize the torque dynamic performance of the SRM.
文摘This paper deals with an analytical method to effectively calculate the inductance of an exterior-rotor switched reluctance motor(SRM),which evaluates the winding inductance of both the active section and the end section,accounting for the influence of core saturation.According to the inductance calculated by the analytical model,the flux linkage table and torque table can be established,and the steady state performance such as phase current,flux linkage,copper loss and core loss can be predicted.Effectiveness of this method is verified by the finite element method as well as by experimental results of a 12/8 SRM prototype.
基金supported by National Natural Science Foundation of China under Grant 52077141 and 51920105011Young and Middle-Aged Scientific and Technological Innovation Talent Program of Shenyang City of Liaoning Province of China under Grant RC200427。
文摘Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong candidate for high-speed driving fields. Under the circumstances, a 12/14 BSRM with hybrid stator pole has been proposed due to its high output torque density and excellent decoupling characteristics between torque and suspension force. However, this motor has torque dead-zone, which leads to problems of self-start at some rotor positions and large torque ripple during normal operation. To solve the existing problems in the 12/14 type, an asymmetric rotor pole type BSRM is proposed. The structure and design process of the proposed motor is presented in detail. The characteristics of the proposed motor is analyzed and compared with that of the 12/14 type. Furthermore, prototype of the proposed structure is designed, manufactured and experimented. Finally, simulation and test results are illustrated and analyzed to prove the validity of the proposed structure.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51737008.
文摘In this paper,the equivalent reluctance network model(ERNM)is used to calculate the magnetic circuit of a permanent magnet-assisted synchronous reluctance motor(PMASynRM)and calculate no-load air-gap magnetic field and electromagnetic torque.Iteration method is used to solve the relative permeability of iron core.A novel reluctance network model based on actual distribution of the magnetic flux inside the motor is established.The magnetomotive force(MMF)generated by armature winding affects the relative permeability of iron core,which is considered in the calculation of ERNM to improve the accuracy when the motor is under load.ERNM can be used to measure air-gap flux density,no-load back electromotive force(EMF),the average value of motor torque,the armature winding voltage under load,and power factor.The method of calculating the motor performance is proposed.The results of calculation are consistent with finite element method(FEM)and the computational complexity is much less than that of the FEM.The results of ERNM has been verified,which will provide a simple method for motor design and analysis.
基金This work was supported in part by the National Natural Science Foundation of China(51707083)in part by the Natural Science Foundation of Jiangsu Province(BK20190848)+1 种基金in part by the China Postdoctoral Science Foundation(2019M661746)by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In traditional analytical method(AM),the magnetic saturation is always ignored to simplify the calculation process.However,synchronous reluctance motors(SynRMs)often operate around saturation point to achieve higher torque density.Therefore,a new AM is proposed,in which the saturation of stator iron has been considered.The key of the proposed method includes a saturation factor,and an iterative method is adopted to compute the saturation factor in the SynRM by increasing the air-gap length.Especially,the proposed AM can be applied to a SynRM even with shifted-asymmetrical-salient-poles.In the process of AM,the expression of stator magnetomotive force(MMF)is built firstly.Additionally,the air-gap density including slotting effect and salient-poles is calculated.Then,the rotor MMF under saturation of the stator iron is obtained.Therefore,the precision of the instantaneous torque can be improved significantly.Eventually,by the verification of finite elements method(FEM)and experiments,the torque performance of SynRMs with shifted asymmetrical rotor can be predicted accurately by the proposed AM.
基金supported by the National Natural Science Foundations of China (Nos. 51877107,51577087,51477074)
文摘Although the five-degree-of-freedom magnetic levitation system composed of two conical bearingless switched reluctance motors(CBSRMs)owns the simplest structure,the torque and levitation forces are coupled greatly.Therefore,it is difficult to make the rotor rotate and be fully levitated simultaneously.To solve this problem,two different role division control strategies are proposed in this paper,i.e.individual role division and mutual role division control strategies.The difference between them is the selection of motor which controls the torque or the axial force.In order to understand the characteristics of control variables,the principle and mathematical model of CBSRM are introduced.After that,two control strategies are explained in detail.To verify the demonstrated performance,the simulations are completed with MATLAB/Simulink.
基金This work was supported in part by National Natural Science Foundation of China under Grant 51977040.
文摘Torque ripple is an inherent property of switched reluctance motor(SRM),which seriously affects the control performance and application of the motor.This paper proposes two torque ripple suppression control strategies based on torque-sharing function(TSF).According to the symmetry characteristics of the flux linkage and rotor position curve family,a fourth-order Fourier series is used to fit the SRM flux linkage analytical model.The coefficient of each harmonic term of the flux linkage model is a function related to current,expressed by a sixth-order polynomial.The torque analytical formula can be derived from the flux linkage model.The torque error is calculated via the identified torque model and is compensated through TSF controller in order to reduce torque ripple.The torque model can also be used to establish the torque loop to achieve accurate tracking of the TSF reference torque to reduce torque ripple.Digital simulation was conducted,followed by the implementation on a SRM test bench using a 28335DSP as the master control chip.The experimental results are consistent with the simulation results,and indicate the effectiveness of the proposed schemes.
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07043735)。
文摘There has been a growing interest in switched reluctance motor(SRM)ever since the development of thyristor in 1956.The most appealing feature of SRM which attracts researchers over these years is its simple structure that incorporates concentrated windings on the stator poles and plain laminations of ferromagnetic material as a rotor.Due to this attributes,advances are being made rapidly with the consideration that SRM can be used as an alternative to DC motors and permanent magnet motors.The objective of this paper is to present an overview of the recent developments and a prediction of possible future advancements in SR Drives.Brief history,importance,innovations in structure and control,along with practical application examples are all discussed here to give a more in-depth comprehension of the motor.
基金This work was supported in part by the National Natural Science Foundation of China under Grant61503132 and Grant51477047the Hunan Provincial Natural Science Foundation of China under Grant2015JJ5029.
文摘Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.
基金This work was supported in part by the National Natural Science Youth Foundation of China(51407021)the central university basic research business fee(3132015214).
文摘When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the torque ripple and the stator phase current are larger.In order to resolve the above problems,through the analysis and deduction for SRM flux model and the influence of characteristics of flux and speed on torque ripple,this paper presents a variable-flux control strategy with the three closed-loop structure based on the critical flux supersaturated speed.And a DTC system of SRM with variable flux and three closed-loop is built up in Matlab/simulink.Moreover,the DSP hardware experiment platform based on the TMS320F2812 is established to validate the performance of the improved algorithm.The simulation and experimental results show that the new scheme has an obvious effect on torque ripple reduction,and the three-phase stator current is obviously reduced,which greatly reduces the stator winding copper consumption during the operation of SRM.Moreover,the improved system has good system stability.
基金This work was supported by the National Natural Science Foundation of China under Grant 51277026 and 61674033Natural Science Foundation of Jiangsu Province under Grant BK20161148the Scientific Research Foundation of Graduate School of Southeast University under Grant YBJJ1822.(Corresponding author:Weifeng Sun.)。
文摘This paper proposes an improved method for the prediction of radial vibration in switched reluctance motor(SRM)considering magnetic saturation.In this paper,the basic modeling principle is briefly introduced,it is based on the derivation that the peak acceleration is dependent on the product of phase current and current gradient idi/dt.However,the derivation may cause errors due to saturation effect.Thus in this paper,the discrete sample data are firstly acquired based on DC pulse measurement method,by which electromagnetic,torque and peak acceleration characteristics can all be acquired.Then the entire peak acceleration characteristics are obtained by improved Least Square Support Vector Machine(LSSVM).Based on the obtained static peak acceleration characteristics,the time-varied radial vibration model is established based on superposition of natural oscillations of dominant vibration modes.Finally,a simulation model is built up using MATLAB/Simulink.The good agreement between simulation and experiment shows that the proposed method for modeling is feasible and accurate,even under saturation.In addition,since LSSVM does not need any prior knowledge,it is much easier for modeling compared with other existing literatures.
文摘A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor (SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.
文摘Discusses the inevitability of torque ripple of switched reluctance motor (SRM) for its double saliency construction and switch power supply, and the minimization of torque ripple, under traditional current chopping control mode, and presents a varying current amplitude chopping control method with a linear control model of varying current amplitude chopping shown, and the simulation of torque profiles under two kinds of current chopping control modes to demonstrate the validity of decreasing torque ripple.