期刊文献+
共找到567篇文章
< 1 2 29 >
每页显示 20 50 100
Biochar induced trade-offs and synergies between ecosystem services and crop productivity
1
作者 Jinxia Wang Qiu Huang +9 位作者 Kai Peng Dayang Yang Guozhen Wei Yunfei Ren Yixuan Wang Xiukang Wang Nangia Vinay Shikun Sun Yanming Yang Fei Mo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第11期3882-3895,共14页
Biochar amendment offers a chance for sustainable agriculture.However,the effectiveness of biochar relies on its physical and chemical properties,which are heavily affected by biochar production conditions and managem... Biochar amendment offers a chance for sustainable agriculture.However,the effectiveness of biochar relies on its physical and chemical properties,which are heavily affected by biochar production conditions and management practices.Therefore,substantial uncertainties regarding the use of biochar exist in agricultural systems globally.This study provides the first quantitative evaluation of the impacts of biochar characteristics and management practices on key ecosystem services by performing a second-order meta-analysis based on 34,628 paired observations in biochar-amended and unamended systems.Overall,biochar enhances phytotoxicity alleviation,physiology regulation,soil remediation and carbon sequestration,and microbial functional gene abundance.However,some prominent trade-offs exist between crop productivity and ecosystem service deliveries including for nutrient cycling,microbial function,climate change mitigation,and the soil microbial community.The adoption of low C:N biochar produced at high pyrolysis temperatures from sewage sludge-derived feedstock,in combination with a moderate application rate and inorganic fertilizer input,shows potential for achieving synergistic promotion of crop productivity and ecosystem services.These outcomes highlight the need for judicious implementation of biochar-based solutions to site-specific soil constraints.The quantified synergy and tradeoff relationships will aid the establishment of a sustainable biochar development framework that strengthens necessary ecosystem services commensurate with food security assurance. 展开更多
关键词 BIOCHAR soil remediation phytotoxicity alleviation carbon sequestration PRODUCTIVITY
下载PDF
Accessible and low-to zero-cost remedy:Traditional medicine use during pregnancy and labor
2
作者 Modupe Motunrayo ADAMOLEKUN Oluwaseyi Abiodun AKPOR +2 位作者 Oghenerobor Benjamin AKPOR Oluwakemi Elizabeth ADEOLA Olusola Bolaji ADEWALE 《Journal of Integrative Nursing》 2023年第2期75-80,共6页
Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examp... Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community. 展开更多
关键词 LABOR PREGNANCY remedy traditional medicine
下载PDF
Screening and pilot-scale evaluation of a highly efficient pesticide-degrading Pseudomonas sp.strain BL5
3
作者 Rui Chen Xinyu Zuo +6 位作者 He Bai Ruolin Qin Zhiguo Chen Yiyun Liu Wenqing Cao Jingpeng Song Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期287-294,共8页
The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,w... The widespread use of pesticides has caused serious harm to ecosystems,necessitating effective and environmentally friendly treatment methods.Bioremediation stands out as a promising approach for pollutant treatment,wherein the metabolic activities of microorganisms can transform toxic pesticides into compounds with lower or no toxicity.In this study,we obtained eight pesticide-degrading strains from pesticide-contaminated sites through continuous enrichment and screening.Four highly efficient pesticide-degrading strains(degradation ratios exceeding 80%)were identified.Among them,Pseudomonas sp.BL5 exhibited the strongest growth(exceeding 109 CFU$ml1)and outstanding degradation of benzene derivatives and chlorinated hydrocarbons at both laboratory and pilot scales,with degradation ratios exceeding 98%and 99.6%,respectively.This research provides new tools and insights for the bioremediation of pesticide-related pollutants. 展开更多
关键词 PESTICIDES PILOT-SCALE Degradation REMEDIATION Pseudomonas sp. BENZENE
下载PDF
3D-Printed MOF Monoliths:Fabrication Strategies and Environmental Applications
4
作者 Hossein Molavi Kamyar Mirzaei +4 位作者 Mahdi Barjasteh Seyed Yahya Rahnamaee Somayeh Saeedi Aliakbar Hassanpouryouzband Mashallah Rezakazemi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期358-405,共48页
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora... Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths. 展开更多
关键词 MOFS 3D-printing Environmental remediation SHAPING MONOLITHS
下载PDF
Malargüe Site Remediation:A Successful Solution for Uranium Mill Tailings
5
作者 BARARI E DíAZ J G +1 位作者 GIOMIA KEMPF R A 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2088-2094,共7页
Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ... Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability. 展开更多
关键词 REMEDIATION radionuclide transfer TAILINGS ENCAPSULATION SOLUTION sustainable
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag
6
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
7
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Micro-nano-fabrication of green functional materials by multiphase microfluidics for environmental and energy applications
8
作者 Cheng Qi Tao Zhou +6 位作者 Xingjiang Wu Kailang Liu Lei Li Zhou Liu Zhuo Chen Jianhong Xu Tiantian Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1199-1219,共21页
Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of... Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of resultant materials.Recently,functional materials with well-defined micro-/nanostructures fabricated by microfluidics find important applications as environmental and energy materials.This review first illustrated in detail how different structures or shapes of droplet and jet templates are formed by typical configurations of microfluidic channel networks and multiphase flow systems.Subsequently,recent progresses on several representative energy and environmental applications,such as water purification,water collecting and energy storage,were overviewed.Finally,it is envisioned that integrating microfluidics and other novel materials will play increasing important role in contributing environmental remediation and energy storage in near future. 展开更多
关键词 MICROFLUIDICS Multi-phase flow Droplet and microfiber Environmental remediation Energy Storage
下载PDF
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage
9
作者 Angana Mahanta Debashis Sarmah +6 位作者 Nilotpol Bhuyan Monikankana Saikia Sarat Phukan K.S.V.Subramanyam Ajit Singh Prasenjit Saikia Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期133-147,共15页
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain... Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water. 展开更多
关键词 Opencast mining Pyrite oxidation Coal geochemistry Coal petrology Rare earth elements AMD remediation
下载PDF
Self-adaptive gas flow and phase change behaviors during hydrate exploitation by alternate injection of N_(2) and CO_(2)
10
作者 Bo-Jian Cao Yi-Fei Sun +5 位作者 Hong-Nan Chen Jin-Rong Zhong Ming-Long Wang Ming Wang Chang-Yu Sun Guang-Jin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2120-2129,共10页
Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed ... Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed methods,the spontaneous displacement of CH_(4) from hydrate cages by CO_(2) seems to be a perfect mechanism to address gas production and CO_(2) storage,especially in today's strong demand for carbon reduction and replacing clean energy.After extensive lab researches,in the past decade,injecting a mixture of CO_(2) and small molecule gas has become a key means to enhance displacement efficiency and has great potential for application.However,there is a lack of in-depth research on gas flow in the reservoir,while the injected gas always passes through low-saturated hydrate areas with high permeability and then occurs gas channel in a short term,finally resulting in the decreases in gas production efficiency and produced gas quality.Therefore,we explored a new injection-production mode of alternate injection of N2 and CO_(2) in order to fully coordinate the advantages of N_(2) in enhanced hydrate decomposition and CO_(2) in solid storage and heat compensation.These alternate"taking"and"storing"processes perfectly repair the problem of the gas channel,achieving self-regulation effect of CH_(4) recovery and CO_(2) storage.The 3-D experimental results show that compared to the mixed gas injection,CH_(4) recovery is increased by>50%and CO_(2) storage is increased by>70%.Additionally,this alternate injection mode presented a better performance in CH_(4) concentration of produced gas and showed outstanding N_(2) utilization efficiency.Further,we analyzed its self-adaptive gas flow mechanism and proposed an application model of"one injection and multiple production".We look forward to this study accelerating the application of CO_(2)-CH_(4) replacement technology. 展开更多
关键词 HYDRATE Replacement CH_(4)recovery CO_(2)storage Reservoir remediation
下载PDF
Enhanced gas production and CO_(2) storage in hydrate-bearing sediments via pre-depressurization and rapid CO_(2) injection
11
作者 Hongnan Chen Yifei Sun +5 位作者 Bojian Cao Minglong Wang Ming Wang Jinrong Zhong Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期126-134,共9页
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t... Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate. 展开更多
关键词 HYDRATE DEPRESSURIZATION CO_(2) storage CH_(4) production Reservoir remediation
下载PDF
Addressing Japan’s disposal of nuclear-contaminated water from the perspective of international human rights law
12
作者 Yen-Chiang Chang Xiaonan Zhao 《Chinese Journal of Population,Resources and Environment》 2024年第1期1-9,共9页
The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually ente... The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually entering the human body via the food chain.This poses a substantial risk of irreversible damage to both the ecosystem and human health,a situation that will worsen with the ongoing discharge of such water.The respect and protection of human rights represent an international consensus,and safeguarding fundamental human rights is a substantial obligation that states must undertake in accordance with both international and domestic law.Since the Fukushima nuclear disaster,Japan has continuously violated its international legal obligations to protect human rights in several areas,including the resettlement of disaster victims,the reduction of nuclear radiation levels,and the handling of contaminated water.Such actions have compromised and will continue to compromise the basic human rights of not only its citizens but also those of people worldwide,including environmental rights,the right to life,development rights,and food rights.In the aftermath of the Fukushima meltdown,the public and workers involved in handling nuclear contaminants have been continually exposed to high radiation levels,endangering their rights to life,development,and health.Japan’s inadequate efforts in victim resettlement and environmental restoration have jeopardized the environmental and food rights of its citizens to live healthily and access food in an environment unaffected by nuclear radiation.The release of nuclear-contaminated water poses a risk of Japan’s nuclear pollution to the people of neighboring countries and the global population at large.The principle of human rights underpins the theory of a community with a shared future for humanity,and human rights are a crucial area of China’s active participation in United Nations affairs and global governance.By voicing concerns over Japan’s potential human rights violations globally,China demonstrates its role as a responsible major country.In response to Japan’s breach of legal obligations and human rights violations,China can adopt a reasoned and beneficial approach,including calling on the international community to hold Japan criminally accountable for crimes against humanity under the Rome Statute and advancing scholarly discussions on ecocide and crimes against the marine environment.Furthermore,China should persist in seeking advisory opinions from the International Court of Justice and strive for substantive accountability,utilizing the mechanisms of international human rights organizations to make its voice heard. 展开更多
关键词 Fukushima nuclearcontaminated water Crimes against humanity remedy for violations of human rights Right to environment Right to life
下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation
13
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
下载PDF
Pollution source identification methods and remediation technologies of groundwater: A review
14
作者 Ya-ci Liu Yu-hong Fei +2 位作者 Ya-song Li Xi-lin Bao Peng-wei Zhang 《China Geology》 CAS CSCD 2024年第1期125-137,共13页
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi... Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies. 展开更多
关键词 Groundwater pollution Identification of pollution sources Geophysical exploration identification Geochemistry identification Isotopic tracing Numerical modeling Remediation technology Hydrogeological conditions Hydrogeological survey engineering
下载PDF
Effect of salinization on soil properties and mechanisms beneficial to microorganisms in salinized soil remediation-a review
15
作者 Jing Pan Xian Xue +6 位作者 CuiHua Huang QuanGang You PingLin Guo RuiQi Yang FuWen Da ZhenWei Duan Fei Peng 《Research in Cold and Arid Regions》 CSCD 2024年第3期121-128,共8页
Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead... Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil. 展开更多
关键词 Salinized soil Microbial remediation Halophilic and halotolerant microorganisms Soil properties
下载PDF
Technique of Earthworms Restoring Soil in Greenhouse Cultivation
16
作者 Yanjiao LI Jiafei SU +7 位作者 Zhiu ZHANG Guang QI Jianhua CHEN Lixuan KOU Limin WANG Wenxian LIU Junyi ZHANG Libing QIU 《Asian Agricultural Research》 2024年第1期40-43,共4页
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon... The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation. 展开更多
关键词 Earthworms Greenhouse cultivation Soil remediation Biological agent
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
17
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM Soil remediation Soil improvement
下载PDF
Feasibility Evaluation of Using Biochar-based Permeable Reactive Barrier for the Remediation of Mercury and Arsenic Composite Polluted Water Bodies
18
作者 Dilixiati·Abulizi 《Asian Agricultural Research》 2024年第5期15-19,共5页
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition... This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency. 展开更多
关键词 BIOCHAR Goethite-modified biochar Permeable reactive barrier(PRB) Mercury and arsenic pollution Remediation efficiency
下载PDF
Comparison and Selection of Water Restoration Techniques for Artificial Landscape Lakes in Nantong City
19
作者 Shengrong YAN Yuyue MA +2 位作者 Yi'an CHEN Jiafeng SUN Mingqing CHEN 《Agricultural Biotechnology》 2024年第3期90-92,95,共4页
As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable... As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable homes.Taking the urban water system of Nantong as an example,Nantong Water Resources Bureau issued R evision of Nantong Urban Water System Planning in 2017,and put forward the construction of the"two circles,eight lakes and nine veins"water system layout,giving new vitality to the urban water system.In view of problems existing in newly excavated artificial landscape lakes,such as fragile water ecosystem,strong eutrophication trend,poor environmental sensory effect and unsatisfactory water landscape effect,it is urgent to study the in-situ water ecological restoration technique of"algae-controlling zooplankton+submerged plant community"to build a"grass-type clear water"ecosystem for artificial landscape lakes,so as to improve the water sensory index and self-purification ability and finally realize the double improvement of"sensory effect and water quality"of artificial landscape lakes. 展开更多
关键词 Water body remediation technique Artificial landscape lake Comparison and selection Nantong City
下载PDF
Ecological Remediation Technology of Urban Landscape Water Body
20
作者 SUN Xiangxuan XIONG Qingqing XIAO Shizhen 《Journal of Landscape Research》 2024年第1期55-58,共4页
Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents fo... Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment. 展开更多
关键词 Urban landscape water body Water body treatment Ecological remediation
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部