Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article ...Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article describes the overall study on land water in the program of global land cover remote sensing mapping. Through collection and processing of Landsat TM/ETM+, China's HJ-1 satellite image, etc., the program achieves an effective overlay of global multi-spectral image of 30 m resolution for two base years, namely, 2000 and 2010, with the image rectification accuracy meeting the requirements of 1:200000 mapping and the error in registration of images for the two periods being controlled within 1 pixel. The indexes were designed and selected reasonably based on spectral features and geometric shapes of water on the scale of 30 m resolution, the water information was extracted in an elaborate way by combining a simple and easy operation through pixel-based classification method with a comprehensive utilization of various rules and knowledge through the object-oriented classification method, and finally the classification results were further optimized and improved by the human-computer interaction, thus realizing high-resolution remote sensing mapping of global water. The completed global land water data results, including Global Land 30-water 2000 and Global Land 30-water 2010, are the classification results featuring the highest resolution on a global scale, and the overall accuracy of self-assessment is 96%. These data are the important basic data for developing relevant studies, such as analyzing spatial distribution pattern of global land water, revealing regional difference, studying space-time fluctuation law, and diagnosing health of ecological environment.展开更多
Remote sensing mapping is an important research direction in the development of geographic surveying and mapping.In order to successfully implement the project of Mapping Western China(MWC),a technical mapping system ...Remote sensing mapping is an important research direction in the development of geographic surveying and mapping.In order to successfully implement the project of Mapping Western China(MWC),a technical mapping system has been established.In this project,many problems have been solved through technological innovation,such as block adjustment with scarce control points,large-scale aerial/satellite image mapping,and intelligent interpretation of multi-source images.Several softwares were developed,e.g.PixelGrid for aerial/satellite image mapping in a large area,FeatureStation for the integration of multi-source data in the complex terrain areas,and an airborne multi-band and multi-polarization interferometric data acquisition system for SAR mapping.For the first time,full coverage of 1:50,000 topographic data of China’s land territory has been produced,which means the geospatial framework of digital China is basically completed.With the implementation of other key national plans and projects(i.e.national geographic conditions monitoring and national remote sensing mapping),the focus has changed from MWC to national dynamic mapping.Accordingly,a dynamic mapping system is established.The data acquisition capability has developed from a single source to multiple sources and multiple modalities.The mapping capability has developed into dynamic mapping,and the capability for database update shows the characteristics of collaboration.The national geographic condition monitoring creates a multi-scale index system for statistical analysis for various needs.A multi-level and multi-dimensional technical system for statistical computing and decision-making service is developed for the transformation from dynamic monitoring to information service.In this paper,we give a brief introduction about the recent development of remote sensing mapping in China with respect to data acquisition,map production,and information service.The purpose of this paper is to motivate the establishment of theory and method for remote sensing mapping,technical and equipment in the smart mapping era,to improve the capability of perceiving,analyzing,mining,and applying geographic data,and to promote the intelligent development of geographic surveying and mapping.展开更多
With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
Long Tan Hydroelectric Station is planned to be built in the middle reaches of Hong Shui River between the Guongxi Zhuang Autonomous Region and Guizhou Province where the terrain is complicated and the traffic is unco...Long Tan Hydroelectric Station is planned to be built in the middle reaches of Hong Shui River between the Guongxi Zhuang Autonomous Region and Guizhou Province where the terrain is complicated and the traffic is unconvenient. In order to speed up engineering design, the synthetical remote sensing survey and mapping had been made展开更多
Wetland databases can provide the basic data that necessary for the protection and management of wetlands. A large number of wetland databases have been established in the world as well as in China. In this paper, we ...Wetland databases can provide the basic data that necessary for the protection and management of wetlands. A large number of wetland databases have been established in the world as well as in China. In this paper, we review China's wetland databases based on remote sensing(RS) technology after introducing the background theory to the application of RS technology in wetland surveys. A key conclusion is that China's wetland databases are far from sufficient in fulfilling protection and management needs. Our recommendations focus on the use of the hyper-spectral imagery, microwave data, multi-temporal images, and automatic classifications in order to improve the accuracy and efficiency of wetland inventory. Further, attention should also be paid to detect major biophysical features of wetlands and build wetland databases in years after the 1980 s in China. Considering that great gap exists between RS experts and wetland experts, further cooperation between wetland scientists and RS scientists are needed to promote the application of RS in the foundation of wetland databases.展开更多
Identifying and monitoring the spatiotemporal patterns of potentially contaminated land(PCL) in China is a key concern of ecological governance. However, the dynamics of PCL’s expansion remain unclear nationwide. Int...Identifying and monitoring the spatiotemporal patterns of potentially contaminated land(PCL) in China is a key concern of ecological governance. However, the dynamics of PCL’s expansion remain unclear nationwide. Integrating high-resolution remote sensing images, a land-use/cover change database, crawler data from websites, and other multisource data, we produced a new dataset of China’s PCL in 1990, 2000, 2010, and 2020 using data fusion technology. Then we analyzed the spatiotemporal patterns of China’s PCL from 1990 to 2020. Our study shows that the acquired vector dataset of China’s PCL is of high quality and reliability, with an overall accuracy of 93.21%. The area of China’s PCL has kept growing for the past 30 years, and the growth rate was especially rapid during2000–2010, 2.32 and 6.13 times as rapid as that during 1990–2000 and 2010–2020, respectively. PCL has also been trending toward higher aggregation over markedly enlarged areas and has transferred progressively from north and southeast of China to northwest and southwest of China and Qinghai-Tibet Plateau. The patterns of China’s PCL have been driven by the joint factors of policies, mineral resources, economy, and others, among which policies and the economy have contributed more prominently to the long-term transition.Our study promotes the access to high-quality spatial data of PCL to facilitate environmental governance of mine wastes, pollution and land management.展开更多
Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the...Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.展开更多
An efficient and reliable automated model that can map physical Soil and Water Conservation(SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ...An efficient and reliable automated model that can map physical Soil and Water Conservation(SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and Arc GIS?ERDAS IMAGINE?and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures:(1) a high-pass spatial filter algorithm was applied to detect linear features,(2) morphological processing was used to remove unwanted linear features,(3) the raster format was vectorized,(4) the vectorized linear features were split per hectare(ha) and each line was then classified according to its compass directionand(5) the sum of all vector lengths per class of direction per ha was calculated. Finallythe direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Thereforethe model is useful for predicting and mapping physical SWC structures areas across diverse areas.展开更多
To approach basic scientific questions on the origin and evolution of plan- etary bodies such as planets, their satellites and asteroids, one needs data on their chemical composition. The measurements of gamma-rays, X...To approach basic scientific questions on the origin and evolution of plan- etary bodies such as planets, their satellites and asteroids, one needs data on their chemical composition. The measurements of gamma-rays, X-rays and neutrons emit- ted from their surface materials provide information on abundances of major elements and naturally radioactive gamma-ray emitters. Neutron spectroscopy can provide sen- sitive maps of hydrogen- and carbon-containing compounds, even if buried, and can uniquely identify layers of carbon-dioxide frost. Nuclear spectroscopy, as a means of compositional analysis, has been applied via orbital and lander spacecraft to extrater- restrial planetary bodies: the Moon, Venus, Mars, Mercury and asteroids. The knowl- edge of their chemical abundances, especially concerning the Moon and Mars, has greatly increased in recent years. This paper describes the principle of nuclear spec- troscopy, nuclear planetary instruments carried on planetary missions so far, and the nature of observational results and findings of the Moon and Mars, recently obtained by nuclear spectroscopy.展开更多
It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolutio...It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.展开更多
基金supported by the National High-Tech R&D Program of China(Grant Nos.2009AA122003 and 2009AA122001)
文摘Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article describes the overall study on land water in the program of global land cover remote sensing mapping. Through collection and processing of Landsat TM/ETM+, China's HJ-1 satellite image, etc., the program achieves an effective overlay of global multi-spectral image of 30 m resolution for two base years, namely, 2000 and 2010, with the image rectification accuracy meeting the requirements of 1:200000 mapping and the error in registration of images for the two periods being controlled within 1 pixel. The indexes were designed and selected reasonably based on spectral features and geometric shapes of water on the scale of 30 m resolution, the water information was extracted in an elaborate way by combining a simple and easy operation through pixel-based classification method with a comprehensive utilization of various rules and knowledge through the object-oriented classification method, and finally the classification results were further optimized and improved by the human-computer interaction, thus realizing high-resolution remote sensing mapping of global water. The completed global land water data results, including Global Land 30-water 2000 and Global Land 30-water 2010, are the classification results featuring the highest resolution on a global scale, and the overall accuracy of self-assessment is 96%. These data are the important basic data for developing relevant studies, such as analyzing spatial distribution pattern of global land water, revealing regional difference, studying space-time fluctuation law, and diagnosing health of ecological environment.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 41701506 and 41671440].
文摘Remote sensing mapping is an important research direction in the development of geographic surveying and mapping.In order to successfully implement the project of Mapping Western China(MWC),a technical mapping system has been established.In this project,many problems have been solved through technological innovation,such as block adjustment with scarce control points,large-scale aerial/satellite image mapping,and intelligent interpretation of multi-source images.Several softwares were developed,e.g.PixelGrid for aerial/satellite image mapping in a large area,FeatureStation for the integration of multi-source data in the complex terrain areas,and an airborne multi-band and multi-polarization interferometric data acquisition system for SAR mapping.For the first time,full coverage of 1:50,000 topographic data of China’s land territory has been produced,which means the geospatial framework of digital China is basically completed.With the implementation of other key national plans and projects(i.e.national geographic conditions monitoring and national remote sensing mapping),the focus has changed from MWC to national dynamic mapping.Accordingly,a dynamic mapping system is established.The data acquisition capability has developed from a single source to multiple sources and multiple modalities.The mapping capability has developed into dynamic mapping,and the capability for database update shows the characteristics of collaboration.The national geographic condition monitoring creates a multi-scale index system for statistical analysis for various needs.A multi-level and multi-dimensional technical system for statistical computing and decision-making service is developed for the transformation from dynamic monitoring to information service.In this paper,we give a brief introduction about the recent development of remote sensing mapping in China with respect to data acquisition,map production,and information service.The purpose of this paper is to motivate the establishment of theory and method for remote sensing mapping,technical and equipment in the smart mapping era,to improve the capability of perceiving,analyzing,mining,and applying geographic data,and to promote the intelligent development of geographic surveying and mapping.
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.
文摘Long Tan Hydroelectric Station is planned to be built in the middle reaches of Hong Shui River between the Guongxi Zhuang Autonomous Region and Guizhou Province where the terrain is complicated and the traffic is unconvenient. In order to speed up engineering design, the synthetical remote sensing survey and mapping had been made
基金Under the auspices of National Basic Research Program of China(No.2010CB95090103)Technological Basic Research Program of China(No.2013FY111800)
文摘Wetland databases can provide the basic data that necessary for the protection and management of wetlands. A large number of wetland databases have been established in the world as well as in China. In this paper, we review China's wetland databases based on remote sensing(RS) technology after introducing the background theory to the application of RS technology in wetland surveys. A key conclusion is that China's wetland databases are far from sufficient in fulfilling protection and management needs. Our recommendations focus on the use of the hyper-spectral imagery, microwave data, multi-temporal images, and automatic classifications in order to improve the accuracy and efficiency of wetland inventory. Further, attention should also be paid to detect major biophysical features of wetlands and build wetland databases in years after the 1980 s in China. Considering that great gap exists between RS experts and wetland experts, further cooperation between wetland scientists and RS scientists are needed to promote the application of RS in the foundation of wetland databases.
基金Under the auspices of the National Key Research and Development Program (No. 2018YFC1800103, 2018YFC1800106)。
文摘Identifying and monitoring the spatiotemporal patterns of potentially contaminated land(PCL) in China is a key concern of ecological governance. However, the dynamics of PCL’s expansion remain unclear nationwide. Integrating high-resolution remote sensing images, a land-use/cover change database, crawler data from websites, and other multisource data, we produced a new dataset of China’s PCL in 1990, 2000, 2010, and 2020 using data fusion technology. Then we analyzed the spatiotemporal patterns of China’s PCL from 1990 to 2020. Our study shows that the acquired vector dataset of China’s PCL is of high quality and reliability, with an overall accuracy of 93.21%. The area of China’s PCL has kept growing for the past 30 years, and the growth rate was especially rapid during2000–2010, 2.32 and 6.13 times as rapid as that during 1990–2000 and 2010–2020, respectively. PCL has also been trending toward higher aggregation over markedly enlarged areas and has transferred progressively from north and southeast of China to northwest and southwest of China and Qinghai-Tibet Plateau. The patterns of China’s PCL have been driven by the joint factors of policies, mineral resources, economy, and others, among which policies and the economy have contributed more prominently to the long-term transition.Our study promotes the access to high-quality spatial data of PCL to facilitate environmental governance of mine wastes, pollution and land management.
基金the Egyptian Ministry of Higher Education and Scientific Research
文摘Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.
基金covered by the Swiss National Centre of Competence in Research North-South (NCCR North-South) program
文摘An efficient and reliable automated model that can map physical Soil and Water Conservation(SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and Arc GIS?ERDAS IMAGINE?and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures:(1) a high-pass spatial filter algorithm was applied to detect linear features,(2) morphological processing was used to remove unwanted linear features,(3) the raster format was vectorized,(4) the vectorized linear features were split per hectare(ha) and each line was then classified according to its compass directionand(5) the sum of all vector lengths per class of direction per ha was calculated. Finallythe direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Thereforethe model is useful for predicting and mapping physical SWC structures areas across diverse areas.
基金supported by the Korea-Japan International Cooperative Research Program funded by the Korean Research Fund (F01-2009-000-100540-0, 10-6303)KIGAM’s Internal Project (12-3612) funded by the Ministry of Knowledge Economy
文摘To approach basic scientific questions on the origin and evolution of plan- etary bodies such as planets, their satellites and asteroids, one needs data on their chemical composition. The measurements of gamma-rays, X-rays and neutrons emit- ted from their surface materials provide information on abundances of major elements and naturally radioactive gamma-ray emitters. Neutron spectroscopy can provide sen- sitive maps of hydrogen- and carbon-containing compounds, even if buried, and can uniquely identify layers of carbon-dioxide frost. Nuclear spectroscopy, as a means of compositional analysis, has been applied via orbital and lander spacecraft to extrater- restrial planetary bodies: the Moon, Venus, Mars, Mercury and asteroids. The knowl- edge of their chemical abundances, especially concerning the Moon and Mars, has greatly increased in recent years. This paper describes the principle of nuclear spec- troscopy, nuclear planetary instruments carried on planetary missions so far, and the nature of observational results and findings of the Moon and Mars, recently obtained by nuclear spectroscopy.
基金supported by the Chinese Academy of Sciences Action Plan for West Development Project (Grant No. KZCX2-XB3-15)the National High-tech R&D Program of China (Grant No. 2012AA12A304)
文摘It is very difficult to have remote sensing data with both high spatial resolution and high temporal frequency; thus, two categories of land-use mapping methodology have been developed separately for coarser resolution and finer resolution data. The first category uses time series of data to retrieve the variation of land surface for classification, which are usually used for coarser resolution data with high temporal frequency. The second category uses fine spatial resolution data to classify different land surface. With the launch of Chinese satellite constellation HJ-1in 2008, four 30 m spatial resolution CCDs with about 360 km coverage for each one onboard two satellites made a revisit period of two days, which brought a new type of data with both high spatial resolution and high temporal frequency. Therefore, by taking the spatiotemporal advantage of HJ-1/CCD data we propose a new method for finer resolution land cover mapping using the time series HJ-1/CCD data, which can greatly improve the land cover mapping accuracy. In our two study areas, the very high resolution remote sensing data within Google Earth are used to validate the land cover mapping results, which shows a very high mapping accuracy of 95.76% and 83.78% and a high Kappa coefficient of 0.9423 and 0.8165 in the Dahuofang area of Liaoning Province and the Heiquan area of Gansu Province respectively.