Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases...Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.展开更多
Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical...Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.展开更多
In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ...In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.展开更多
目的:设计一种心电信号无线传输系统,以提高动态心电监护仪中心电信号的无线传输性能。方法:该系统由心电信号采集模块、无线收发模块、无线通信协议模块和数字滤波模块组成。心电信号采集模块由数字接口电路、A/D转换器微处理器、心电...目的:设计一种心电信号无线传输系统,以提高动态心电监护仪中心电信号的无线传输性能。方法:该系统由心电信号采集模块、无线收发模块、无线通信协议模块和数字滤波模块组成。心电信号采集模块由数字接口电路、A/D转换器微处理器、心电放大电路组成。无线收发模块由无线射频单元、晶振电路、射频电路、调试串口、寄存器、电源模块和复位电路组成。无线通信协议模块由数据链路层与物理层组成,其中数据链路层设计自动应答和调频2种机制。数字滤波模块主要由数字滤波器、信号输入模块、延时单元、系数寄存器等组成,其中数字滤波器采用等波纹法设计,并将心电信号转换为输出序列,实现信号去噪。将基于ZigBee组网和通用分组无线业务(general packet radio service,GPRS)的心电信号无线传输方法和基于无线组网模块的心电信号无线传输方法作为对比方法,验证该系统在不同近程传输距离和不同远程传输距离下的心电信号无线传输性能。结果:相比其他2种方法,在不同近程传输距离和不同远程传输距离下,该系统的心电信号无线传输平均速率和成功传输比例较高,平均用时及平均重传数较低。结论:该系统能够实现动态心电监护仪中心电信号高效、平稳、清晰的无线传输。展开更多
1 前言
在信息时代,互联网的发展日新月异,这些发展也逐渐衍生到了医疗行业。世界卫生组织(World Health Organization,WH0)关于“电子医疗”(e—Health)概念的阐述,即在卫生保健领域使用信息和通信技术,其中包括远程医疗,...1 前言
在信息时代,互联网的发展日新月异,这些发展也逐渐衍生到了医疗行业。世界卫生组织(World Health Organization,WH0)关于“电子医疗”(e—Health)概念的阐述,即在卫生保健领域使用信息和通信技术,其中包括远程医疗,即利用信息和通信技术,向偏远地区传递卫生保健服务。展开更多
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
文摘Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
基金This research was funded by the Key Research and Development Plan of Jiangsu Province under grant BE2017735.Q.S.conceived the study and wrote the manuscript.Q.S.,C.C.,H.G.X.W.collected,analyzed,and interpreted the data.H.G.and X.W.contributed substantially to the development of ECG signal conversion Matlab software and remote automatic detection algorithm.J.L.,M.C.and C.L.revised the manuscript,evaluated and supervised the study.
文摘Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.
文摘In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.
文摘目的:设计一种心电信号无线传输系统,以提高动态心电监护仪中心电信号的无线传输性能。方法:该系统由心电信号采集模块、无线收发模块、无线通信协议模块和数字滤波模块组成。心电信号采集模块由数字接口电路、A/D转换器微处理器、心电放大电路组成。无线收发模块由无线射频单元、晶振电路、射频电路、调试串口、寄存器、电源模块和复位电路组成。无线通信协议模块由数据链路层与物理层组成,其中数据链路层设计自动应答和调频2种机制。数字滤波模块主要由数字滤波器、信号输入模块、延时单元、系数寄存器等组成,其中数字滤波器采用等波纹法设计,并将心电信号转换为输出序列,实现信号去噪。将基于ZigBee组网和通用分组无线业务(general packet radio service,GPRS)的心电信号无线传输方法和基于无线组网模块的心电信号无线传输方法作为对比方法,验证该系统在不同近程传输距离和不同远程传输距离下的心电信号无线传输性能。结果:相比其他2种方法,在不同近程传输距离和不同远程传输距离下,该系统的心电信号无线传输平均速率和成功传输比例较高,平均用时及平均重传数较低。结论:该系统能够实现动态心电监护仪中心电信号高效、平稳、清晰的无线传输。
文摘1 前言
在信息时代,互联网的发展日新月异,这些发展也逐渐衍生到了医疗行业。世界卫生组织(World Health Organization,WH0)关于“电子医疗”(e—Health)概念的阐述,即在卫生保健领域使用信息和通信技术,其中包括远程医疗,即利用信息和通信技术,向偏远地区传递卫生保健服务。