[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dos...[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus.展开更多
[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus...[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus by different constructed wetland substrates like steel slag, cin- der slag, shale, boiler slag, soil and gravel. [ Result~ The maximum adsorption of phosphorus by various substrates showed as follows, steel slag 〉 cinder slag 〉 shale 〉 boiler slag 〉 soil 〉 gravel. When the initial concentration of phosphorus was 5 mg/L, the removal rate of phosphorus by the steel slag, cinder slag, shale, boiler slag, soil and gravel was 99.76%, 85.8%, 71.2%, 63.0%, 46.8% and 11.7% respectively. It is suggested that shale and boiler slag can be used as the substrate of subsurface-flow constructed wetlands; cinder slag can be chosen as a renewable sub- strate for intensifying phosphorus removal; steel slag could be used at the end of subsurface-flow constructed wetlands for treating TP in outflows. [Concluslon] The research could provide theoretical references for choosing a suitable substrate for constructed wetlands to remove phosphorus in future.展开更多
文摘[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus.
基金Supported by National Natural Science Foundation of China(50278016)
文摘[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus by different constructed wetland substrates like steel slag, cin- der slag, shale, boiler slag, soil and gravel. [ Result~ The maximum adsorption of phosphorus by various substrates showed as follows, steel slag 〉 cinder slag 〉 shale 〉 boiler slag 〉 soil 〉 gravel. When the initial concentration of phosphorus was 5 mg/L, the removal rate of phosphorus by the steel slag, cinder slag, shale, boiler slag, soil and gravel was 99.76%, 85.8%, 71.2%, 63.0%, 46.8% and 11.7% respectively. It is suggested that shale and boiler slag can be used as the substrate of subsurface-flow constructed wetlands; cinder slag can be chosen as a renewable sub- strate for intensifying phosphorus removal; steel slag could be used at the end of subsurface-flow constructed wetlands for treating TP in outflows. [Concluslon] The research could provide theoretical references for choosing a suitable substrate for constructed wetlands to remove phosphorus in future.