In the age of rapidly growing global population and escalating energy demands,the pursuit of sustainable,zero-emission energy sources has become critical.This article explores the interplay between environmental conce...In the age of rapidly growing global population and escalating energy demands,the pursuit of sustainable,zero-emission energy sources has become critical.This article explores the interplay between environmental concerns,such as global warming and the greenhouse effect,and the need for innovative energy solutions.The melting polar ice caps exemplify the urgent need for reducing carbon emissions.ARCs(advanced reactor concepts)in both fission and fusion technologies offer promising paths to zero-emission energy.Advanced fission reactors,including SMRs(small modular reactors)and Generation IV reactors,provide improved safety,efficiency,and waste management.Fusion energy,despite being in the experimental stage,holds potential as a nearly limitless clean energy source.AI(artificial intelligence)significantly enhances these technologies by optimizing design,operations,maintenance,safety,and grid integration.AI-driven innovations are pivotal in accelerating the development and deployment of ARC technologies,ensuring they are safe,reliable,and efficient.The article underscores the vital role of policy support,global cooperation,and strategic investments in shaping a sustainable energy future that can mitigate the effects of climate change,support economic growth,and protect our planet.展开更多
Hydroelectricity has great importance for the global macroeconomy. In Brazil, hydroelectricity has been highlighted as the main source of generation of the electric system both for its economic competitiveness and for...Hydroelectricity has great importance for the global macroeconomy. In Brazil, hydroelectricity has been highlighted as the main source of generation of the electric system both for its economic competitiveness and for the abundance of this energy resource. Based on a diagnosis methodology, this article presents a case study in a Brazilian hydroelectric plant in order to optimize the use of energy and propose improvements regarding the rationalization of its application. The systems associated with energy generation were evaluated and the results proved to be potentially advantageous with an estimated savings of 2910 MWh/year in the electricity consumption of the installation itself, with better use of the equipment and the possibility of increasing the power generated.展开更多
The electric sector contributes substantially to both greenhouse gas(GHG)and non-greenhouse gas(NGHG)emissions,which means that both conventional and thermal generation companies(GENCOs)must follow certain environment...The electric sector contributes substantially to both greenhouse gas(GHG)and non-greenhouse gas(NGHG)emissions,which means that both conventional and thermal generation companies(GENCOs)must follow certain environmental guidelines to address various emission requirements.This paper presents a methodology to investigate the feasibility of both GHG and NGHG emission reduction in a deregulated electricity market.The proposed model takes into consideration the effect of NGHG emission cost constraints in conjunction with classical GHG emission constraints for the scheduling aspects of GENCO.A profit based self-scheduling problem with conventional fossil fueled generators and renewable energy technologies(RETs)is formulated including emission penalties and avoidance costs of GHG and NGHG emissions,respectively.Thereafter,a set of pareto solutions is evaluated for different possible scheduling scenarios.A simple,effective optimality criteria is also postulated to identify the tradeoff solution.Finally,a sensitivity analysis of various technical,environmental,as well as economic aspects is presented to examine the effect of NGHG consideration and RET inclusion in scheduling.The simulation results are presented and discussed in detail to examine the effect of NGHG consideration in self-scheduling practices of GENCO in the electricity market,thus reflecting the benefits of the proposed approach over classical emission handling approaches.展开更多
To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating...To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating Systems (BRSs) and Occupant Rating Systems (ORSs). The main objective of this paper is to be able to examine the most commonly applied international and national BRS and ORS and, based on that, discover the possibility of developing an integration of both the BRS and ORS into one rating system. Quite simply, a BRS is a method by which buildings are assessed and given a score based on numerous features such as the efficiency of each of the services, total energy consumption, and alternate options of consumption. There are various BRSs that are implemented globally, each with its own set of criteria and specifications. Thus, based on the analysis of the benefits and drawbacks of both types of rating systems, it could be deduced that a well-rounded rating system with all technical and non-technical aspects combined would be beneficial to both the efficiency of the building as well as the building occupants’ health and well-being.展开更多
Global warming and climate change are two key probing issues in the present context.The electricity sector and transportation sector are two principle entities propelling both these issues.Emissions from these two sec...Global warming and climate change are two key probing issues in the present context.The electricity sector and transportation sector are two principle entities propelling both these issues.Emissions from these two sectors can be offset by switching to greener ways of transportation through the electric vehicle (EV) and renewable energy technologies (RET).Thus,effective scheduling of both resources holds the key to sustainable practice.This paper presents a scheduling scenario-based approach in the smart grid.Problem formulation with dual objective function including both emissions and cost is developed for conventional unit commitment with EV and RET deployment.In this work,the scheduling and commitment problem is solved using the fireworks algorithm which mimics explosion of fireworks in the sky to define search space and the distance between associated sparks to evaluate global minimum.Further,binary coded fireworks algorithm is developed for the proposed scheduling problem in the smart grid.Thereafter,possible scenarios inconventional as well as smart grid are put forward.Following that,the proposed methodology is simulated using a test system with thermal generators.展开更多
Unmanned systems are increasingly adopted in various fields,becoming an indispensable technology in daily life.Power systems are the lifeblood of unmanned systems,and affect the working time and task complexity.Howeve...Unmanned systems are increasingly adopted in various fields,becoming an indispensable technology in daily life.Power systems are the lifeblood of unmanned systems,and affect the working time and task complexity.However,traditional power systems,such as batteries and fuels have a fixed capacity.Therefore,once the power supply is exhausted and cannot be replenished in time,the unmanned systems will stop working.Hence,researchers have increasingly begun paying attention to renewable energy generation technologies.The principles,advantages,and limitations of renewable energy generation technologies are different,and their application effects in different unmanned systems are also uneven.This paper presents a comprehensive study of the application and development status of photovoltaic,thermoelectric,and magnetoelectric generation technologies in four kinds of unmanned systems,including space,aviation,ground,and water,and then summarizes the adaptability and limitations of the three technologies to different systems.Moreover,future development directions are predicted to enhance the reliability of renewable energy generation technologies in unmanned systems.This is the first study to conduct a comprehensive and detailed study of renewable energy generation technologies applied in unmanned systems.The present work is critical for the development of renewable energy generation technologies and power systems for unmanned systems.展开更多
文摘In the age of rapidly growing global population and escalating energy demands,the pursuit of sustainable,zero-emission energy sources has become critical.This article explores the interplay between environmental concerns,such as global warming and the greenhouse effect,and the need for innovative energy solutions.The melting polar ice caps exemplify the urgent need for reducing carbon emissions.ARCs(advanced reactor concepts)in both fission and fusion technologies offer promising paths to zero-emission energy.Advanced fission reactors,including SMRs(small modular reactors)and Generation IV reactors,provide improved safety,efficiency,and waste management.Fusion energy,despite being in the experimental stage,holds potential as a nearly limitless clean energy source.AI(artificial intelligence)significantly enhances these technologies by optimizing design,operations,maintenance,safety,and grid integration.AI-driven innovations are pivotal in accelerating the development and deployment of ARC technologies,ensuring they are safe,reliable,and efficient.The article underscores the vital role of policy support,global cooperation,and strategic investments in shaping a sustainable energy future that can mitigate the effects of climate change,support economic growth,and protect our planet.
文摘Hydroelectricity has great importance for the global macroeconomy. In Brazil, hydroelectricity has been highlighted as the main source of generation of the electric system both for its economic competitiveness and for the abundance of this energy resource. Based on a diagnosis methodology, this article presents a case study in a Brazilian hydroelectric plant in order to optimize the use of energy and propose improvements regarding the rationalization of its application. The systems associated with energy generation were evaluated and the results proved to be potentially advantageous with an estimated savings of 2910 MWh/year in the electricity consumption of the installation itself, with better use of the equipment and the possibility of increasing the power generated.
文摘The electric sector contributes substantially to both greenhouse gas(GHG)and non-greenhouse gas(NGHG)emissions,which means that both conventional and thermal generation companies(GENCOs)must follow certain environmental guidelines to address various emission requirements.This paper presents a methodology to investigate the feasibility of both GHG and NGHG emission reduction in a deregulated electricity market.The proposed model takes into consideration the effect of NGHG emission cost constraints in conjunction with classical GHG emission constraints for the scheduling aspects of GENCO.A profit based self-scheduling problem with conventional fossil fueled generators and renewable energy technologies(RETs)is formulated including emission penalties and avoidance costs of GHG and NGHG emissions,respectively.Thereafter,a set of pareto solutions is evaluated for different possible scheduling scenarios.A simple,effective optimality criteria is also postulated to identify the tradeoff solution.Finally,a sensitivity analysis of various technical,environmental,as well as economic aspects is presented to examine the effect of NGHG consideration and RET inclusion in scheduling.The simulation results are presented and discussed in detail to examine the effect of NGHG consideration in self-scheduling practices of GENCO in the electricity market,thus reflecting the benefits of the proposed approach over classical emission handling approaches.
文摘To begin with, rating systems are a beneficial tool in determining the efficiency of a building’s ability to utilise its resources effectively. In this study, the two elements under comparison are the Building Rating Systems (BRSs) and Occupant Rating Systems (ORSs). The main objective of this paper is to be able to examine the most commonly applied international and national BRS and ORS and, based on that, discover the possibility of developing an integration of both the BRS and ORS into one rating system. Quite simply, a BRS is a method by which buildings are assessed and given a score based on numerous features such as the efficiency of each of the services, total energy consumption, and alternate options of consumption. There are various BRSs that are implemented globally, each with its own set of criteria and specifications. Thus, based on the analysis of the benefits and drawbacks of both types of rating systems, it could be deduced that a well-rounded rating system with all technical and non-technical aspects combined would be beneficial to both the efficiency of the building as well as the building occupants’ health and well-being.
文摘Global warming and climate change are two key probing issues in the present context.The electricity sector and transportation sector are two principle entities propelling both these issues.Emissions from these two sectors can be offset by switching to greener ways of transportation through the electric vehicle (EV) and renewable energy technologies (RET).Thus,effective scheduling of both resources holds the key to sustainable practice.This paper presents a scheduling scenario-based approach in the smart grid.Problem formulation with dual objective function including both emissions and cost is developed for conventional unit commitment with EV and RET deployment.In this work,the scheduling and commitment problem is solved using the fireworks algorithm which mimics explosion of fireworks in the sky to define search space and the distance between associated sparks to evaluate global minimum.Further,binary coded fireworks algorithm is developed for the proposed scheduling problem in the smart grid.Thereafter,possible scenarios inconventional as well as smart grid are put forward.Following that,the proposed methodology is simulated using a test system with thermal generators.
基金supported by the Key Program of National Natural Science Foundation of China(Grant No.61933002)the National Science Fund for Distinguished Young Scholars(Grant No.62025301)。
文摘Unmanned systems are increasingly adopted in various fields,becoming an indispensable technology in daily life.Power systems are the lifeblood of unmanned systems,and affect the working time and task complexity.However,traditional power systems,such as batteries and fuels have a fixed capacity.Therefore,once the power supply is exhausted and cannot be replenished in time,the unmanned systems will stop working.Hence,researchers have increasingly begun paying attention to renewable energy generation technologies.The principles,advantages,and limitations of renewable energy generation technologies are different,and their application effects in different unmanned systems are also uneven.This paper presents a comprehensive study of the application and development status of photovoltaic,thermoelectric,and magnetoelectric generation technologies in four kinds of unmanned systems,including space,aviation,ground,and water,and then summarizes the adaptability and limitations of the three technologies to different systems.Moreover,future development directions are predicted to enhance the reliability of renewable energy generation technologies in unmanned systems.This is the first study to conduct a comprehensive and detailed study of renewable energy generation technologies applied in unmanned systems.The present work is critical for the development of renewable energy generation technologies and power systems for unmanned systems.