We discuss what document types account for the calculation of the journal impact factor (JIF) as published in the Journal Citation Reports (JCR). Based on a brief review of articles discussing how to predict JIFs ...We discuss what document types account for the calculation of the journal impact factor (JIF) as published in the Journal Citation Reports (JCR). Based on a brief review of articles discussing how to predict JIFs and taking data differences between the Web of Science (WoS) and the JCR into account, we make our own predictions. Using data by cited-reference searching for Thomson Scientific's WoS, we predict 2007 impact factors (1Fs) for several journals, such as Nature, Science, Learned Publishing and some Library and Information Sciences journals. Based on our colleagues' experiences we expect our predictions to be lower bounds for the official journal impact factors. We explain why it is useful to derive one's own journal impact factor.展开更多
Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transfor...Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transformation reproducibility and efficiency. Using a linear minimal gus gene cassette as the foreign DNA, a maximum transformation frequency of 11% was obtained in flowers of the soybean cultivar ‘Liaodou 14’ with their styles mostly removed, whereas removal of only the stigma, partial style cutting and partial ovary cutting gave transformation frequencies of 0%, 1%, and 2%, respectively. An average transformation frequency of 8.2% was obtained when 619 flowers from three soybean cultivars (‘Liaodou 14’, ‘Liaodou 13’, and ‘Tiefeng 29’) were transformed by this optimized method. Southern blotting analysis showed that the gus reporter gene (encoding β-glucuronidase) was stably inherited with a simple pattern. Reverse transcription-polymerase chain reaction (RT-PCR) and GUS staining confirmed the expression of the gus gene in transgenic plants.展开更多
文摘We discuss what document types account for the calculation of the journal impact factor (JIF) as published in the Journal Citation Reports (JCR). Based on a brief review of articles discussing how to predict JIFs and taking data differences between the Web of Science (WoS) and the JCR into account, we make our own predictions. Using data by cited-reference searching for Thomson Scientific's WoS, we predict 2007 impact factors (1Fs) for several journals, such as Nature, Science, Learned Publishing and some Library and Information Sciences journals. Based on our colleagues' experiences we expect our predictions to be lower bounds for the official journal impact factors. We explain why it is useful to derive one's own journal impact factor.
基金Project (No. JY03-B-18-02) supported by the National R & D Project of Transgenic Crops of Ministry of Science and Technology of China
文摘Soybean transformation by ovary-drip was improved by optimizing the length of the transformation pathway by cutting the styles. These modifications facilitated soybean transformation manipulation and improved transformation reproducibility and efficiency. Using a linear minimal gus gene cassette as the foreign DNA, a maximum transformation frequency of 11% was obtained in flowers of the soybean cultivar ‘Liaodou 14’ with their styles mostly removed, whereas removal of only the stigma, partial style cutting and partial ovary cutting gave transformation frequencies of 0%, 1%, and 2%, respectively. An average transformation frequency of 8.2% was obtained when 619 flowers from three soybean cultivars (‘Liaodou 14’, ‘Liaodou 13’, and ‘Tiefeng 29’) were transformed by this optimized method. Southern blotting analysis showed that the gus reporter gene (encoding β-glucuronidase) was stably inherited with a simple pattern. Reverse transcription-polymerase chain reaction (RT-PCR) and GUS staining confirmed the expression of the gus gene in transgenic plants.