期刊文献+
共找到485篇文章
< 1 2 25 >
每页显示 20 50 100
基于高效通道注意力的多阶段图像去雨网络
1
作者 李国金 张书铭 +1 位作者 林森 陶志勇 《电光与控制》 CSCD 北大核心 2024年第4期109-114,120,共7页
针对现有图像去雨算法不能更好地保留图像背景细节的问题,提出一种基于高效通道注意力的多阶段图像去雨网络。首先,网络使用3×3卷积提取雨图的浅层特征并传递给高效通道注意力模块,为不同的特征通道分配不同的权重;然后,传递给3个... 针对现有图像去雨算法不能更好地保留图像背景细节的问题,提出一种基于高效通道注意力的多阶段图像去雨网络。首先,网络使用3×3卷积提取雨图的浅层特征并传递给高效通道注意力模块,为不同的特征通道分配不同的权重;然后,传递给3个并行阶段,在前2个阶段中,使用编码-解码器进行多尺度特征提取,减少雨纹信息丢失,其中使用Transformer模块抑制无用信息传递;最后,在第3个阶段使用初始分辨率模块代替编码-解码器,从而保留输出图像的精细特征。实验结果表明,所提算法在Rain800、Rain12、Rain100L和Rain100H公开测试集上的结构相似性分别为0.830、0.968、0.960和0.944,峰值信噪比分别为27.33 dB、35.27 dB、36.79 dB和28.94 dB。所提算法相比于经典和新颖的图像去雨算法,在去除雨纹和恢复背景细节上具有更好的效果。 展开更多
关键词 深度学习 图像去雨 多阶段网络 Transformer模块 通道注意力机制
下载PDF
高效通道注意力结合卷积神经网络的近红外光谱分析模型研究
2
作者 王妞 宦克为 +2 位作者 傅钲淇 刘赋伟 王迪 《长春理工大学学报(自然科学版)》 2024年第1期16-22,共7页
近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光... 近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光谱分析模型(CNNECANet),该模型由8个一维卷积层、1个ECA模块、4个最大池化层、1个展平层、2个全连接层和1个参数优化器组成。ECA模块由1个全局平均池化、1个一维卷积层和1个Sigmoid激活函数组成。以啤酒、牛奶、柴油、谷物的近红外光谱公共数据为例,将CNNECANet与常用建模方法进行比较,CNNECANet比PLS的预测精度分别提高了30.3%、14.1%、29.5%、48.4%;CNNECANet比SVR的预测精度分别提高了33.5%、17.6%、39.0%、50.0%;CNNECANet比BP神经网络模型的预测精度分别提高了80.0%、29.0%、7.2%、42.7%。该模型具有更好的预测精度和鲁棒性,解决了传统近红外光谱建模算法容易出现过拟合、模型泛化性差等问题。 展开更多
关键词 近红外光谱 卷积神经网络 高效通道注意力 预测模型
下载PDF
基于双线性RepVGG注意力网络的花卉分类 被引量:1
3
作者 侯向宁 赵金伟 +1 位作者 黄孝斌 蒋维成 《激光杂志》 CAS 北大核心 2024年第4期165-171,共7页
为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两... 为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两个RepVGG网络中分别引入通道注意力及空间注意力机制,并利用两个RepVGG网络外积后生成的高维双线性特征,来提取花卉的细粒度特征;最后通过结构重参数化,将RepVGG的各层转换为单路结构,以提高模型推理的速度。实验结果表明,在增强的Oxford-102数据集上,新模型与原始模型及常见模型相比,其推理速度及分类准确率均有较大的提升,与未引入注意力前相比,分类准确率也有一定的提升。 展开更多
关键词 双线性卷积神经网络 repvgg 注意力机制 细粒度 结构重参数化
下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:2
4
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
下载PDF
基于卷积神经网络与通道和空间注意力机制的房颤预测模型研究
5
作者 王量弘 蔡冰洁 +3 位作者 刘硕 杨涛 王新康 高洁 《福建医药杂志》 CAS 2024年第1期1-4,共4页
目的采用人工智能技术提出一种模型,以对房颤进行早期预防和诊断。方法提出一种基于卷积神经网络(convolutional neural network,CNN)与通道和空间注意力机制(convolutional block attention module,CBAM)的模型用于对房颤的诊断与预测... 目的采用人工智能技术提出一种模型,以对房颤进行早期预防和诊断。方法提出一种基于卷积神经网络(convolutional neural network,CNN)与通道和空间注意力机制(convolutional block attention module,CBAM)的模型用于对房颤的诊断与预测。结果根据长期心房颤动数据库、MIT-BIH心房颤动数据库和MIT-BIH正常窦性心律数据库的数据,提出的模型在全盲的情况下总体准确率达94.2%。结论提出的模型满足了医学心电图解释的需要,为房颤的预测研究提供了新思路。 展开更多
关键词 心电信号 房颤 卷积神经网络 通道和空间注意力机制
下载PDF
ECPANet:一种基于注意力的深度卷积神经网络通道剪枝方法
6
作者 余显冰 杨礼友 李健 《现代计算机》 2024年第7期9-16,共8页
在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源。然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性。为解决这个问题,通道剪枝已成为网络压缩的主要方法之一... 在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源。然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性。为解决这个问题,通道剪枝已成为网络压缩的主要方法之一。传统的通道剪枝方法存在着精度下降和难以确定通道重要性的问题。针对这些问题,提出了一种高效的通道注意力剪枝方法。通过将ECPANet模块嵌入到深度卷积神经网络中以增强其表征能力,评估每个通道在特征映射中的重要性,并根据通道重要性因子剪枝掉不重要的通道以减小模型的大小和计算量。实验结果表明,与传统的通道剪枝方法相比,基于注意力的通道剪枝方法能够更准确地确定通道重要性,从而提高剪枝效果和模型性能。 展开更多
关键词 深度卷积神经网络 通道剪枝 注意力机制
下载PDF
深度复数轴向自注意力卷积循环网络的语音增强 被引量:1
7
作者 曹洁 王乔 +3 位作者 梁浩鹏 王宸章 李晓旭 于泓 《计算机系统应用》 2024年第4期60-68,共9页
单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域... 单通道语音增强任务中相位估计不准确会导致增强语音的质量较差,针对这一问题,提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network,DCACRN)的语音增强方法,在复数域同时实现了语音幅度信息和相位信息的增强.首先使用基于复数卷积网络的编码器从输入语音信号中提取复数表示的特征,并引入卷积跳连模块用以将特征映射到高维空间进行特征融合,加强信息间的交互和梯度的流动.然后设计了基于轴向自注意力机制的编码器-解码器结构,利用轴向自注意力机制来增强模型的时序建模能力和特征提取能力.最后通过解码器实现对语音信号的重构,同时利用混合损失函数优化网络模型,提升增强语音信号的质量.实验在公开数据集Valentini和DNS Challenge上进行,结果表明所提方法相对于其他模型在客观语音质量评估(perceptual evaluation of speech quality,PESQ)和短时客观可懂度(short-time objective intelligibility,STOI)两项指标上均有提升,在非混响数据集中,PESQ比DCTCRN(deep cosine transform convolutional recurrent network)提高了12.8%,比DCCRN(deep complex convolutional recurrent network)提高了3.9%,验证了该网络模型在语音增强任务中的有效性. 展开更多
关键词 通道语音增强 复数卷积循环网络 卷积跳连 轴向自注意力机制
下载PDF
基于混合域残差注意力网络的滚动轴承智能故障诊断方法
8
作者 贾立新 陈永毅 +1 位作者 倪洪杰 张丹 《高技术通讯》 CAS 北大核心 2024年第1期101-110,共10页
机械设备正朝着大型化、精密化和自动化的方向发展,机械系统也因此变得越来越复杂。考虑到机械系统可能会发生无特征的灾难性故障,因此机械故障的自动检测是一个巨大的挑战。然而,现有的故障检测方法在对高度复杂的工业系统进行故障类... 机械设备正朝着大型化、精密化和自动化的方向发展,机械系统也因此变得越来越复杂。考虑到机械系统可能会发生无特征的灾难性故障,因此机械故障的自动检测是一个巨大的挑战。然而,现有的故障检测方法在对高度复杂的工业系统进行故障类型识别时,误诊率较高,无法给出准确的故障诊断结果。针对这一问题,本文以滚动轴承这一机械设备关键部件作为研究对象,提出一种基于混合域残差注意力网络的故障诊断方法,旨在结合深度卷积神经网络自动学习表示的优点,并配合通道注意力机制和空间注意力机制的关键特征提取能力,提高故障检测性能。实验结果表明,所提出的方法能够准确地检测轴承故障类型,在准确度指标方面优于其他方法。 展开更多
关键词 故障诊断 滚动轴承 通道注意力机制 空间注意力机制 卷积神经网络(CNN)
下载PDF
融合高效通道注意力的复杂场景违禁品检测
9
作者 崔丽群 李万欣 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第4期494-505,共12页
针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引... 针对X射线在违禁品检测任务中安检图像色彩存在对比度低、检测精度低、极易出现漏检错检的问题,在快速区域卷积神经网络(Faster R-CNN)算法基础上,通过K-means聚类算法改进锚框(Anchor)的生成方式;提出将高效通道注意力机制(ECANet)引入到感兴趣池化层(ROIpooling)后,突出违禁品的轮廓、色彩等信息。本文算法在S_DXray数据集上的m AP达到92.06%,改进后网络模型检测精度提高5.06个百分点。有效提高X射线图像违禁品检测的精度和小尺度目标的检测能力,有效避免错检、漏检的现象。 展开更多
关键词 目标检测 X射线图像 残差网络 特征金字塔 K均值聚类 快速区域卷积神经网络 高效通道注意力机制
下载PDF
融合双层注意力网络的端到端老挝车牌照识别方法
10
作者 黄彬煌 毛存礼 +3 位作者 陈蕊 余正涛 黄于欣 王振晗 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期862-870,共9页
在中老道路互通大背景下,老挝车牌照识别研究对中国跨境车辆管理十分重要,但现有的单行车牌照识别方法无法直接应用于老挝双行车牌照识别任务中.针对老挝车牌照上行省份字符排列紧密、难以分割和下行辅音字符相似度高、难以识别的问题,... 在中老道路互通大背景下,老挝车牌照识别研究对中国跨境车辆管理十分重要,但现有的单行车牌照识别方法无法直接应用于老挝双行车牌照识别任务中.针对老挝车牌照上行省份字符排列紧密、难以分割和下行辅音字符相似度高、难以识别的问题,结合分割的思想提出一种融合双层注意力网络的端到端老挝车牌照识别方法.通过通道及空间注意力提取并加强上行省份特征和下行字符特征表示;将分类思想应用于省份信息获取,有效地处理因字符粘连而无法做单字符识别的问题;使用序列标注的方法缓解相似字符识别困难,提高字符识别准确率.实验结果表明,提出方法相比基线模型,准确率提升了0.8个百分点,达到92.7%. 展开更多
关键词 深度学习 老挝双行车牌照识别 双层注意力网络 通道及空间注意力 端到端
下载PDF
深度嵌套注意力下的SlowFast信息融合动作识别网络
11
作者 张起尧 桑海峰 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期159-166,共8页
视频动作识别在视频监控、自动驾驶等多个领域都有着广泛的应用。SlowFast网络是视频动作识别领域经常使用的网络。目前SlowFast相关网络中使用注意力进行相关信息增强,注意力机制与网络的结合方式是将注意力机制嵌套到网络的各个卷积... 视频动作识别在视频监控、自动驾驶等多个领域都有着广泛的应用。SlowFast网络是视频动作识别领域经常使用的网络。目前SlowFast相关网络中使用注意力进行相关信息增强,注意力机制与网络的结合方式是将注意力机制嵌套到网络的各个卷积块之间,如果将注意力机制深层嵌套到卷积块的具体卷积层中,SlowFast网络的信息提取能力将更进一步。首先提出了一种深度嵌套注意力机制,该深度嵌套机制内部包含一种可以提取时空与通道信息的注意力SCTM,使SlowFast网络的3种信息提取能力得到了进一步加强。此外,目前多流网络融合的信息并没有充分的交互与处理。提出了一种基于交叉注意力与ConvLSTM的多流时空信息融合网络,使多流网络中每个流的信息充分交互。改进后的SlowFast网络在UCF101数据集上的Top-1准确率已达到98.5%,在HMDB51数据集中的准确率达到了80.1%。均优于目前已有的模型,比原始SlowFast网络提高了2.64%,且鉴于上述数据,深度嵌套注意力的SlowFast时空信息融合网络在信息提取与融合方面具有优越性能。 展开更多
关键词 视频动作识别 SlowFast 注意力深层嵌套 信息融合网络 时空通道注意力
下载PDF
基于注意力与双通道网络的方面级情感分析 被引量:3
12
作者 杨春霞 徐奔 +1 位作者 桂强 韩煜 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第1期42-50,共9页
针对方面级情感分析任务不能充分兼顾句法全面性与语义关联性,且大多数研究中使用的图卷积仅考虑信息自上而下的传播,忽略了信息自下而上的聚合等问题,本文提出了基于注意力与双通道网络的情感分析模型.该模型在扩展依存表示的同时使用... 针对方面级情感分析任务不能充分兼顾句法全面性与语义关联性,且大多数研究中使用的图卷积仅考虑信息自上而下的传播,忽略了信息自下而上的聚合等问题,本文提出了基于注意力与双通道网络的情感分析模型.该模型在扩展依存表示的同时使用自注意力获取具有语义关联的信息矩阵,使用双通道网络结合全局句法与语义关联信息,双通道网络分别侧重于自上而下传播的语义特征与自下而上聚合的结构特征.通道内的图卷积输出会与信息矩阵进行交互注意力起到残差互补的作用,然后通过平均池化完成通道内的任务.最后将基于语义与基于结构的决策融合得到最终的情感分类特征.实验结果表明该模型在三个公开数据集上的准确率与F1值均有提升. 展开更多
关键词 注意力机制 通道网络 决策融合 图卷积
下载PDF
基于注意力机制与残差胶囊网络的滚动轴承故障诊断
13
作者 张宇剑 邓艾东 +3 位作者 汤清清 孔云飞 卞文彬 王敏 《动力工程学报》 CAS CSCD 北大核心 2024年第12期1923-1934,共12页
针对传统深度神经网络在风电机组滚动轴承变工况运行条件下特征学习能力不足、诊断效果不佳的问题,提出了一种通道注意力机制(Channel Attention,CA)与残差胶囊网络(Capsule Residual Network,CPRN)组合的故障诊断模型CA-CRPN,以实现变... 针对传统深度神经网络在风电机组滚动轴承变工况运行条件下特征学习能力不足、诊断效果不佳的问题,提出了一种通道注意力机制(Channel Attention,CA)与残差胶囊网络(Capsule Residual Network,CPRN)组合的故障诊断模型CA-CRPN,以实现变工况下滚动轴承故障的高性能诊断。首先,对振动信号进行连续小波变换生成对应的时频图,经矩阵化重构后作为训练样本,经过通道注意力模块为不同特征分配权重,削弱冗余特征对识别结果的影响,然后输入由卷积层、残差块和胶囊层堆叠搭建的CPRN中,并采取权值共享的仿射变换矩阵替换全连接胶囊层以减少参数量、提高训练速度,最终输出诊断结果。分别用CWRU轴承数据集与实验台模拟数据进行实验。结果表明:CA-CPRN模型在变工况下的平均诊断准确率分别达到97.63%和98.23%,相比其他模型具有更好的泛化能力;在噪声情况下,2个数据集上的诊断准确率均优于其他模型,平均准确率分别达到99.09%和96.32%,证明了模型在抗噪方面的优越性。 展开更多
关键词 滚动轴承 连续小波变换 通道注意力机制 残差胶囊网络 变工况 故障诊断
下载PDF
考虑注意力的无锚框孪生网络目标跟踪算法
14
作者 孙仕棚 兰时勇 《计算机应用与软件》 北大核心 2024年第12期268-274,共7页
孪生(Siamese)网络是解决视觉目标跟踪任务的一种重要方法。无填充孪生网络(SiamDW)的跟踪器采用区域推荐网络(RPN)来进行目标的定位,需要预先设置锚框的高宽比等超参数,不仅调参繁杂,而且跟踪的准确率较低。为解决此问题,提出一种考虑... 孪生(Siamese)网络是解决视觉目标跟踪任务的一种重要方法。无填充孪生网络(SiamDW)的跟踪器采用区域推荐网络(RPN)来进行目标的定位,需要预先设置锚框的高宽比等超参数,不仅调参繁杂,而且跟踪的准确率较低。为解决此问题,提出一种考虑通道注意力且无锚框的孪生网络目标跟踪方法。该方法以SiamDW为基线,引入无填充的DenseNet来提取目标的特征;在通道特征拼接的时候加入通道注意力模块,以提高目标特征的表征力;在无锚框设计的时候,采用一种矩形范围的方式对正负样本进行划分。实验结果表明,在VOT2016和VOT2018数据集上,该算法跟踪的准确率分别比基线算法提高3百分点和6百分点。 展开更多
关键词 孪生网络 目标跟踪 无锚框设计 无填充 通道注意力
下载PDF
基于通道注意力的卷积神经网络在图像超分辨率重建中的应用 被引量:4
15
作者 王东飞 《广播与电视技术》 2018年第6期63-66,共4页
本文简要介绍了当前超高清电视的发展现状和超分辨率技术的研究背景,结合目前热门的深度学习方法,对极深超分辨率卷积神经网络(VDSR)进行了改进,提出了一种基于通道注意力机制的卷积神经网络,并应用于单图像的超分辨率重建任务,通过实... 本文简要介绍了当前超高清电视的发展现状和超分辨率技术的研究背景,结合目前热门的深度学习方法,对极深超分辨率卷积神经网络(VDSR)进行了改进,提出了一种基于通道注意力机制的卷积神经网络,并应用于单图像的超分辨率重建任务,通过实验可以看出重建效果得到了改善。 展开更多
关键词 通道注意力 卷积神经网络 超分辨率重建
下载PDF
基于残差密集注意力网络的图像超分辨率重建
16
作者 储岳中 汪康 +1 位作者 张学锋 刘恒 《苏州科技大学学报(自然科学版)》 CAS 2024年第3期75-84,共10页
针对现有图像超分辨率重建算法中细节丢失和图像边缘模糊等问题,提出了一种基于残差密集注意力网络的图像超分辨率重建方法。该方法采用了密集连接和残差连接的结构来构建残差网络,充分利用低层特征与高层特征之间的信息交互,提取更高... 针对现有图像超分辨率重建算法中细节丢失和图像边缘模糊等问题,提出了一种基于残差密集注意力网络的图像超分辨率重建方法。该方法采用了密集连接和残差连接的结构来构建残差网络,充分利用低层特征与高层特征之间的信息交互,提取更高层次的图像特征。同时,融合通道注意力和空间注意力自适应地选择重要特征,并将这些特征进行加权融合,从而更好地恢复图片的纹理细节。实验结果表明,文中所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)上表现优异。 展开更多
关键词 超分辨率重建 密集连接 残差网络 通道注意力 空间注意力
下载PDF
基于多尺度卷积神经网络和注意力机制的模拟电路早期故障诊断方法
17
作者 徐欣 侯成凯 《电子器件》 CAS 2024年第4期929-934,共6页
模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采... 模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采用小波变换得到脉冲响应信号的多尺度分量,利用设计好的MS-FACNN网络自动提取更加全面且高可分性故障特征,并实现故障模式识别。此外,采用高效通道注意力(ECA)聚焦故障高相关性特征,过滤低相关性的冗余信息,进一步提升模型特征提取能力。实验结果表明,相比传统方法,所提方法具有更强的故障特征提取能力,对四运放双二阶高通滤波器早期故障诊断的准确率达到99.18%。 展开更多
关键词 模拟电路 早期故障诊断 小波变换 多尺度卷积神经网络 有效通道注意力
下载PDF
基于卷积注意力模块和双通道网络的微表情识别算法 被引量:13
18
作者 牛瑞华 杨俊 +1 位作者 邢斓馨 吴仁彪 《计算机应用》 CSCD 北大核心 2021年第9期2552-2559,共8页
微表情是一种人类在试图隐藏自己真实情感时作出的面部动作,具有持续时间短、幅度小的典型特点。针对微表情识别难度大、识别效果不理想的问题,提出一种基于卷积注意力模块(CBAM)和双通道网络(DPN)的微表情识别算法——CBAM-DPN。首先,... 微表情是一种人类在试图隐藏自己真实情感时作出的面部动作,具有持续时间短、幅度小的典型特点。针对微表情识别难度大、识别效果不理想的问题,提出一种基于卷积注意力模块(CBAM)和双通道网络(DPN)的微表情识别算法——CBAM-DPN。首先,进行典型微表情数据集的数据融合;然后,分析序列帧中像素的变化值以确定顶点帧位置,再对顶点帧进行图像增强处理;最后,基于CBAM-DPN对图像增强后的微表情顶点帧进行特征的有效提取,并构建分类器对微表情进行识别。优化后模型的未加权F1值(UF1)和未加权平均召回率(UAR)分别可以达到0.7203和0.7293,相较于DPN模型分别提高了0.0489和0.0379,相较于CapsuleNet模型分别提高了0.0683和0.0787。实验结果表明,CBAM-DPN算法融合了CBAM和DPN的共同优势,可增强微小特征的信息提取能力,有效改善微表情识别性能。 展开更多
关键词 微表情识别 通道网络 卷积注意力模块 顶点帧 结构优化
下载PDF
基于CAN网络结合注意力机制的图像去噪分析研究
19
作者 贾波 齐志坤 姜囡 《警察技术》 2024年第1期46-50,共5页
在公安视频与图像侦查工作中,常涉及到各种含噪生物纹理图像。为降低图像在采集、传输和处理过程中所受噪声的污染程度,同时尽可能保留图像原有的细节信息,基于增强神经网络卷积后各通道图像间的联系,利用CAN网络进行双边算子逼近运算,... 在公安视频与图像侦查工作中,常涉及到各种含噪生物纹理图像。为降低图像在采集、传输和处理过程中所受噪声的污染程度,同时尽可能保留图像原有的细节信息,基于增强神经网络卷积后各通道图像间的联系,利用CAN网络进行双边算子逼近运算,在CAN网络中的最后一层Block引入通道注意力机制增强模块SEnet,对现有CAN网络模型进行了改进。通过计算处理后图像的评价系数,分析对比了不同算法的去噪性能以及原有图像细节信息的保留能力。通过与双边滤波算法和Dn CNN网络的对比分析,改进后的SE-CAN网络能够有效去除图像噪声,对图像原有信息的保留更具优势。 展开更多
关键词 图像去噪 CAN网络 深度学习 通道注意力机制 质量评价
下载PDF
利用残差通道注意力网络的高光谱图像分类 被引量:7
20
作者 魏祥坡 余旭初 管凌霄 《测绘科学技术学报》 北大核心 2019年第2期161-166,172,共7页
残差网络能够有效地解决卷积神经网络出现的梯度消失问题,应用于高光谱图像分类取得了良好的效果,但简单地堆积残差单元并不能很好地提高模型性能。通道注意力机制能够有区别地处理卷积层输出的特征图,更好地利用对分类有用的特征通道... 残差网络能够有效地解决卷积神经网络出现的梯度消失问题,应用于高光谱图像分类取得了良好的效果,但简单地堆积残差单元并不能很好地提高模型性能。通道注意力机制能够有区别地处理卷积层输出的特征图,更好地利用对分类有用的特征通道。为了充分利用残差网络及通道注意力机制的特征提取能力,设计适用于高光谱图像分类的残差通道注意力网络。在残差单元中结合卷积层和通道注意力机制,实现对特征通道的重新调整,并在模型中实现局部残差学习和全局残差学习,促进信息传递,增强模型稳定性。实验结果表明,该方法用于Indian Pines数据和University of Pavia数据能够分别取得98.78%和 99.22%的分类精度,在有限数量训练样本的情况下,能够达到较高的分类精度。 展开更多
关键词 高光谱图像 分类 残差网络 通道注意力 残差通道注意力网络
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部