期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进YOLOv5s-Seg的高效实时实例分割模型 被引量:1
1
作者 马冬梅 郭智浩 罗晓芸 《计算机工程与应用》 CSCD 北大核心 2024年第16期258-268,共11页
实例分割是图像分割的重要组成部分,同时也是计算机视觉领域的一个重要课题。然而现有实例分割模型不能在保证实时性的同时保证模型分割精度,因此在实时实例分割任务中一直存在精度过低、定位不精确的问题。针对此问题,提出了一种基于YO... 实例分割是图像分割的重要组成部分,同时也是计算机视觉领域的一个重要课题。然而现有实例分割模型不能在保证实时性的同时保证模型分割精度,因此在实时实例分割任务中一直存在精度过低、定位不精确的问题。针对此问题,提出了一种基于YOLOv5s-Seg改进的实时实例分割模型。以YOLOv5s-Seg作为网络的基础模型,主干网络选用Repvit m3网络,然后改进FPN结构,在FPN结构中将原始得到的C3卷积模块升级为RsRepVitBlock模块,并在其内部使用ECA注意力机制,最后采用SIoU作为模型的边界框损失函数。该算法在公开数据集PASCAL VOC 2012上的实验结果显示,改进后的模型分割精度mAP达到了65.7%,较原模型YOLOv5s-Seg提高了10.6个百分点。该模型大幅提升了分割精度,并且有效地改善了分割任务中定位不准确的问题。相较于其他模型,具有显著的精度优势和更好的模型稳定性。 展开更多
关键词 实时实例分割 YOLOv5s-Seg repvit m3 RsrepvitBlock 高效通道注意力机制(ECA) SIoU
下载PDF
基于改进YOLOv8曲轴表面缺陷检测算法
2
作者 孙渊 曹俊杰 +1 位作者 唐矫燕 李婷 《组合机床与自动化加工技术》 北大核心 2024年第10期77-81,共5页
针对曲轴表面小目标缺陷检测难度大、缺陷背景复杂和检测速度慢等问题,提出一种改进曲轴表面缺陷检测的算法RB-YOLOv8。首先,用RepViT模块取代了传统的C2f模块,有助于减少网络的计算负担并加快其运行速度;接着,通过优化双向特征融合模块... 针对曲轴表面小目标缺陷检测难度大、缺陷背景复杂和检测速度慢等问题,提出一种改进曲轴表面缺陷检测的算法RB-YOLOv8。首先,用RepViT模块取代了传统的C2f模块,有助于减少网络的计算负担并加快其运行速度;接着,通过优化双向特征融合模块BiFPN及增加小目标检测层,改善小目标缺陷识别的能力;然后,利用BiFormer注意力机制强化模型的抗干扰能力和解决缺陷背景复杂的难题,提高检测准确率;最后,使用MPDIoU损失函数调整,从而进一步提升检测的精准度。实验结果表明,所提出的算法的检测精度可以达到98.4%,模型大小缩减为2.797 MB,同时使每秒帧数(FPS)达到了169 f/s,成功地实现了对曲轴表面的缺陷检测。 展开更多
关键词 曲轴表面缺陷检测 repvit网络 BiFPN模块 BiFormer注意力机制 MPDIoU损失
下载PDF
基于改进YOLOv5s的烟梗物料目标检测算法
3
作者 吕佳铭 张峰 罗亚波 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2438-2446,共9页
在烟草生产线中烟梗输送下落过程中,存在背景信息干扰、目标数量多且形状不一、目标堆叠、下落速度过快等问题,传统图像处理算法难以解决.提出基于改进YOLOv5s的烟梗物料目标检测算法.对YOLOv5s网络的骨干和头部进行优化改进,显著提高... 在烟草生产线中烟梗输送下落过程中,存在背景信息干扰、目标数量多且形状不一、目标堆叠、下落速度过快等问题,传统图像处理算法难以解决.提出基于改进YOLOv5s的烟梗物料目标检测算法.对YOLOv5s网络的骨干和头部进行优化改进,显著提高检测精度,大幅缩小模型大小;将骨干网络优化为RepViT-m1结构,以提高信息提取的效率;采用重参数化技术,以更好地捕捉目标的特征,提高检测的精确性;引入基于注意力机制的目标检测头Dynamic Head,使模型更专注于潜在的目标区域,进一步提高检测精度.实验结果表明:在自建的烟梗数据集上,相较于原YOLOv5s模型,改进YOLOv5s模型的m AP@0.50为96.1%,提高了5.8个百分点;mAP@0.50∶0.95为94.7%,提高了5.7个百分点;模型大小为12.1 MB,减少了12.3%.模型可以为实时监控系统提供可靠且精确的支持. 展开更多
关键词 目标检测 YOLOv5s 烟梗检测 repvit 重参数化 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部