Magnesium phosphate cement-based binder(MPB)for repair of concretewas prepared by prop- ortionally mixing over burned MgO powder(M)withNHH_2PO_4 powder(P)and set modifying admixtures. It is characteristicby excellent ...Magnesium phosphate cement-based binder(MPB)for repair of concretewas prepared by prop- ortionally mixing over burned MgO powder(M)withNHH_2PO_4 powder(P)and set modifying admixtures. It is characteristicby excellent properties such as rapid setting, high strength and highbond strength to old con- crete. The study is focused on the keyfactors influencing the setting time and strength of MPB, the bondproperty of MPB to old concrete and the kinetic feature of thehydration of MPB.展开更多
To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The ...To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The rate of weight gain, rate of surface coating, rate of crack closure and crack filling depth were measured. Scanning electron microscopy was used to assess the morphology of the electrodeposits, and energy dispersive spectroscopy was used to analyze the mineral composition of the electrodeposits in the cracks. The experimental results demonstrate that, among five different pulse parameters, when T_(on)/T_(off)=0.8 ms/0.8 ms, the healing effect of electro-deposition is the best. The pulse mode hardly affects the mineral composition of the electrodeposits but changes the micromorphology. In addition, for both ZnSO_4 and MgSO_4 solutions, when T_(on)/T_(off)=0.8 ms/0.8 ms, the crystal structure of the electrodeposits is the most uniform and the densest.展开更多
A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the m...A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the microstructure of interface between fresh and old (3 months to 60 years) concretes by using scanning electron microscopy.Then,the mechanism of the microstructure formed was analyzed.Finally,the relationship between the micro-structure and macro-mechanical performance of the interface was discussed.展开更多
In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability...In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability of fiber-reinforced polymer (FRP) composite-concrete bonded interfaces. Interface fracture properties were evaluated with established data reduction procedures. The proposed test method is primarily for use in evaluating the effects of freeze-thaw (F-T) and wet-dry (W-D) cycles that are the accelerated aging protocols on the mode-I fracture of carbon FRP-concrete bonded interfaces. The results of the mode-I fracture tests of F-T and W-D cycle-conditioned specimens show that both the critical load and fracture energy decrease as the number of cycles increases, and their degradation pattern has a nearly linear relationship with the number of cycles. However, compared with the effect of the F-T cycles, the critical load and fracture energy degrade at a slower rate with W-D cycles, which suggests that F-T cyclic conditioning causes more deterioration of carbon fiber-reinforced polymer (CFRP)-concrete bonded interface. After 50 and 100 conditioning cycles, scaling of concrete was observed in all the specimens subjected to F-T cycles, but not in those subjected to W-D cycles. The examination of interface fracture surfaces along the bonded interfaces with varying numbers of F-T and W-D conditioning cycles shows that (1) cohesive failure of CFRP composites is not observed in all fractured surfaces; (2) for the control specimens that have not been exposed to any conditioning cycles, the majority of interface failure is a result of cohesive fracture of concrete (peeling of concrete from the concrete substrate), which means that the cracks mostly propagate within the concrete; and (3) as the number of F-T or W-D conditioning cycles increases, adhesive failure along the interface begins to emerge and gradually increases. It is thus concluded that the fracture properties (i.e., the critical load and fracture energy) of the bonded interface are controlled primarily by the concrete cohesive fracture before conditioning and by the adhesive interface fracture after many cycles of F-T or W-D conditioning. As demonstrated in this study, a test method using 3PBB specimens combined with a fictitious crack model and experimental conditioning protocols for durability can be used as an effective qualification method to test new hybrid material interface bonds and to evaluate durability-related effects on the interfaces.展开更多
文摘Magnesium phosphate cement-based binder(MPB)for repair of concretewas prepared by prop- ortionally mixing over burned MgO powder(M)withNHH_2PO_4 powder(P)and set modifying admixtures. It is characteristicby excellent properties such as rapid setting, high strength and highbond strength to old con- crete. The study is focused on the keyfactors influencing the setting time and strength of MPB, the bondproperty of MPB to old concrete and the kinetic feature of thehydration of MPB.
基金the National Natural Science Foundation(Nos.51479051,51778209,51609075,and 51508158)the Fundamental Research Funds for the Central Universities(2016B08414)the National Key R&D Program of China(Nos.2016YFC0401610 and2016YFC0401804)
文摘To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The rate of weight gain, rate of surface coating, rate of crack closure and crack filling depth were measured. Scanning electron microscopy was used to assess the morphology of the electrodeposits, and energy dispersive spectroscopy was used to analyze the mineral composition of the electrodeposits in the cracks. The experimental results demonstrate that, among five different pulse parameters, when T_(on)/T_(off)=0.8 ms/0.8 ms, the healing effect of electro-deposition is the best. The pulse mode hardly affects the mineral composition of the electrodeposits but changes the micromorphology. In addition, for both ZnSO_4 and MgSO_4 solutions, when T_(on)/T_(off)=0.8 ms/0.8 ms, the crystal structure of the electrodeposits is the most uniform and the densest.
文摘A new model of repaired concrete which divides the bonding interface into a penetrating layer,a strongly-affected layer and a weakly-affected layer was put forward.The model is mainly based on the observation of the microstructure of interface between fresh and old (3 months to 60 years) concretes by using scanning electron microscopy.Then,the mechanism of the microstructure formed was analyzed.Finally,the relationship between the micro-structure and macro-mechanical performance of the interface was discussed.
基金partially supported by the National Science Foundation(Grant No.CMS-0002829)
文摘In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability of fiber-reinforced polymer (FRP) composite-concrete bonded interfaces. Interface fracture properties were evaluated with established data reduction procedures. The proposed test method is primarily for use in evaluating the effects of freeze-thaw (F-T) and wet-dry (W-D) cycles that are the accelerated aging protocols on the mode-I fracture of carbon FRP-concrete bonded interfaces. The results of the mode-I fracture tests of F-T and W-D cycle-conditioned specimens show that both the critical load and fracture energy decrease as the number of cycles increases, and their degradation pattern has a nearly linear relationship with the number of cycles. However, compared with the effect of the F-T cycles, the critical load and fracture energy degrade at a slower rate with W-D cycles, which suggests that F-T cyclic conditioning causes more deterioration of carbon fiber-reinforced polymer (CFRP)-concrete bonded interface. After 50 and 100 conditioning cycles, scaling of concrete was observed in all the specimens subjected to F-T cycles, but not in those subjected to W-D cycles. The examination of interface fracture surfaces along the bonded interfaces with varying numbers of F-T and W-D conditioning cycles shows that (1) cohesive failure of CFRP composites is not observed in all fractured surfaces; (2) for the control specimens that have not been exposed to any conditioning cycles, the majority of interface failure is a result of cohesive fracture of concrete (peeling of concrete from the concrete substrate), which means that the cracks mostly propagate within the concrete; and (3) as the number of F-T or W-D conditioning cycles increases, adhesive failure along the interface begins to emerge and gradually increases. It is thus concluded that the fracture properties (i.e., the critical load and fracture energy) of the bonded interface are controlled primarily by the concrete cohesive fracture before conditioning and by the adhesive interface fracture after many cycles of F-T or W-D conditioning. As demonstrated in this study, a test method using 3PBB specimens combined with a fictitious crack model and experimental conditioning protocols for durability can be used as an effective qualification method to test new hybrid material interface bonds and to evaluate durability-related effects on the interfaces.