期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Formation mechanism of transverse crack in repair welding for thick plate of Q345 high strength steel 被引量:1
1
作者 张华军 黄红雨 +2 位作者 蔡春波 沈大明 陈善本 《China Welding》 EI CAS 2012年第2期73-77,共5页
Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is ... Transverse cracks occur usually in repair welding for thick plate of high strength steel. It needs multiple times of repair welding. The quality of production and deliver deadline will be influenced. Therefore, it is very significant to investigate the cause and control of transverse crack in repair welding. In this paper, both ends restraint crack experiment is developed to produce delay transverse crack for high strength steel. Metallographic results show that four types of cracks are found in repair welding metal zone and heat affected zone. Large chevron transverse cracks are found in repair welding zone. Lots of micro transverse cracks are found in inter-layer repair welding metal zone, root HAZ and two ends of repair welding individually. The distribution character and formation mechanism of the transverse crack are further analyzed through hardness testing and residual stress measurement. 展开更多
关键词 repair welding transverse crack high strength steel thick plate chevron transverse crack
下载PDF
Effect of Conventional and Pulsed TIG Welding on Microstructural and Mechanical Characteristics of AA 6082-T6 Repair Welds
2
作者 NAING Thet Htet MUANGJUNBUREE Prapas 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期865-876,共12页
Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repa... Repair welding of AA 6082-T6 joints was carried out using ER 4043 filler through the TIG welding process with or without pulsed current.Microstructure and mechanical characteristics of the joints before and after repairing were investigated by examining macrostructure,microstructure,and distributions of porosity in the weld metal(WM),and by hardness,tensile,and bending tests.We observed that the welding current,phase transformations in heat-affected zone(HAZ)and porosity introduced in the WM during welding influence on its mechanical properties in sequence.The experimental results showed that the bead width and penetration as well as size of pores in the joints were mainly influenced by the welding currents.The sound joints were obtained at a welding current of 140 A with or without pulsed current when welding speed and gas flow rate were set at 20 cm·min-1 and 15 L·min-1,respectively.Among them,the decrease in mechanical properties of repair weld(RW)was directly related to the phase transformations in the over-ageing zone due to the double welding thermal cycles and elevated distribution of porosity in the WM.In addition,it was observed that the comparatively smaller grain size and lower porosity in WM of the RW produced by pulsed TIG welding gave a positive effect on its mechanical properties. 展开更多
关键词 repair welds pulsed TIG welding aluminum alloy 6082-T6 ER 4043 filler
下载PDF
Microstructure and mechanical properties of repair welds of low-pressure sand-cast Mg?Y?RE?Zr alloy by tungsten inert gas welding 被引量:5
3
作者 Xin Tong Guohua Wu +3 位作者 Liang Zhang Yingxin Wang Wencai Liu Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期195-209,共15页
The sand castings of Mg-Y-RE-Zr series alloys are widely utilized in the large scales and complex shapes in the aerospace industry,as a result of which there are always some cast defects in the products. In this study... The sand castings of Mg-Y-RE-Zr series alloys are widely utilized in the large scales and complex shapes in the aerospace industry,as a result of which there are always some cast defects in the products. In this study, the feasibility of repair welding of sand-cast Mg-4 Y-3 RE-0.5 Zr alloy by tungsten inert gas(TIG) welding was scrutinized with different welding currents from 150 to 210 A. The results indicated that defect-free repaired joints with good appearance could be acquired at 170 and 190 A. Interestingly, the grain size of the fusion zone(FZ) was refined initially and then increased with the linear increment of welding current. Because at the higher heat inputs, although the cooling rate of the molten pool was reduced, substantial constitutional supercooling for the grain refinement was attained after the Zr particles were transformed into Zr solutes. The tensile strength of the repaired joint at 170 A was 195 MPa with the maximum joint efficiency of 87.8%, and the elongation reached to 124.4% of the sand-cast base material(BM). However, serious grain coarsening and continuous eutectic structures generated in heat-affected zone(HAZ) above 190 A resulted in the weakening of the joint due to the brittle intergranular fracture. 展开更多
关键词 Sand-cast Mg-Y-RE-Zr alloy repair welding Microstructure Tensile properties Fracture behavior
下载PDF
Influences of the Welding Heat Input and the Repeated Repair Welding on Ti–3Al–2.5V Titanium Alloy 被引量:3
4
作者 Hui-Jun Yi Yong-Jun Lee Kwang-O Lee 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第6期684-691,共8页
The primary purpose of this study was to determine the effects of gas tungsten arc welding heat input on the high-temperature tensile properties, toughness, and microstructural features of titanium alloy Ti-3A1-2.5V. ... The primary purpose of this study was to determine the effects of gas tungsten arc welding heat input on the high-temperature tensile properties, toughness, and microstructural features of titanium alloy Ti-3A1-2.5V. The secondary objective was to examine the effect of the repeated repair welding on the properties of the alloy. It was also found that the mechanical properties progressively decreased with increasing the repair welding cycles, especially in the case of the weldment after the first welding repair. It was observed that the sizes of the acicular and prior β grain boundaries as well as the volume fraction of the acicular phases increased with increasing the welding heat input. In addition, the amount and size of the acicular a1 phases were found to increase with increasing the repair welding cycles. 展开更多
关键词 Ti-3AI-2.5V repair welding Heat input Tensile properties MICROSTRUCTURE
原文传递
Residual Stress and Fracture Toughness Study in A516 Gr70 Steel Joints Welded and Repaired by Arc Processes
5
作者 Régis de Matos Curvelo de Barros Mauricio David Martins das Neves 《Engineering(科研)》 2023年第11期749-758,共10页
Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminat... Structural components made of steel are used in several areas and require welding for assembly. In some situations, repair of the weld bead, also performed by electric arc welding, can be used to correct, and eliminate any discontinuities. However, electric arc welding causes the presence of residual stresses in the joint, which can impair its performance and not meet specific design requirements. In this paper, welded joints made of ASTM A 516 GR 70 steel plates, with a thickness of 30.5 mm, welded by the MAG—Metal Active Gas process (20% CO<sub>2</sub>) and using a “K” groove were analysed. The joints were manufactured with seven welding passes on each side of the groove. After welding, one batch underwent repair of the bead by TIG welding (Tungsten Insert Gas) and another batch underwent two repairs by TIG welding. Were presented results of the behaviour of the residual stress profile measured by X-ray diffraction and the Vickers microhardness profile in the joints as well the fracture toughness in the conditions only welded and submitted to repairs. The results indicated that the greater number of repair passes reduced the residual compressive stress values obtained in the material manufacturing process and caused a stabilization on the Vickers hardness values. It was concluded that compressive residual stresses did not play a major role in the R-curve results. The presence of discontinuities in the welded joint caused greater influence on the behaviour of the R curve. 展开更多
关键词 Weld repair Weld Fatigue Weld J Integral Residual Stress Microharness
下载PDF
Mechanical and Metallurgical Characterization of HSLA X70Welded Pipeline Steel Subjected to Successive Repairs 被引量:2
6
作者 Bouzid Maamache Mabrouk Bouabdallah +3 位作者 Abdelhalim Brahimi Youcef Yahmi Billel Cheniti Brahim Mehdi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第6期568-576,共9页
The aim of this work is to study the influence of successive weld repairs on the microstructure and the mechanical behavior of the heat-affected zone(HAZ) of an HSLA X70 steel. Detailed microstructural examination c... The aim of this work is to study the influence of successive weld repairs on the microstructure and the mechanical behavior of the heat-affected zone(HAZ) of an HSLA X70 steel. Detailed microstructural examination combined to grain size measurement showed that beyond the second weld repair, the microstructure of the HAZ undergoes significant change in the grain morphology and grain growth. The results of the X-ray diffraction analyzed using MAUD software indicated an increase in the crystallite size and a decrease in the dislocation density according to the number of weld repair operations. Consequently, a loss of mechanical properties, namely the yield strength and the toughness with the number of weld repairs, was recorded. Beyond the second weld repair operation, the properties of the welded joint do not fulfill the standards applied in piping industry. 展开更多
关键词 HSLA X70 steel Successive weld repair Heat affected zone Dislocation density
原文传递
Laser Cladding of Cold-Work Tool Steel by Pulse Shaping 被引量:1
7
作者 Matej Pleterski Janez Tuek +1 位作者 Tadej Muhic Ladislav Kosec 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第8期707-713,共7页
Repair welding of cold-work tool steels in cold is very risky and almost impossible by conventional processes. The application of pulse shaping in laser cladding with wire to avoid the solidification problems in relev... Repair welding of cold-work tool steels in cold is very risky and almost impossible by conventional processes. The application of pulse shaping in laser cladding with wire to avoid the solidification problems in relevant steel is demonstrated. The results show that sound remelting and/or cladding can be achieved by the right selection of laser parameters and pulse shape, i.e. long pulse duration, moderate pulse peak powers and ramped-down pulse shape. Despite the defects and softening in the cladding due to the formation of retained austenite, the cladding shows better wear resistance at lower loads compared to the heat-treated base material. 展开更多
关键词 Laser cladding repair welding Tool steel Wear test
原文传递
Effects of Substrate Crystallographic Orientations on Microstructure in Laser Surface-Melted Single-Crystal Superalloy:Theoretical Analysis 被引量:2
8
作者 Guo-Wei Wang Jing-Jing Liang +3 位作者 Yi-Zhou Zhou Tao Jin Xiao-Feng Sun Zhuang-Qi Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第8期763-773,共11页
A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation dur... A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized. 展开更多
关键词 Single crystal Laser surface remelting Weld repair Modeling Stray grains distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部