为加强我国兰属种质资源的保护利用,本研究通过ISSR分子标记对96份兰属种质进行多样性分析和指纹图谱构建。结果显示,共筛选出11条可扩增清晰条带的多样性引物,在96份材料共检测67条多态性条带,平均多态性条带比例为73.63%;等位基因数(...为加强我国兰属种质资源的保护利用,本研究通过ISSR分子标记对96份兰属种质进行多样性分析和指纹图谱构建。结果显示,共筛选出11条可扩增清晰条带的多样性引物,在96份材料共检测67条多态性条带,平均多态性条带比例为73.63%;等位基因数(Na)为1.925,有效等位基因数(Ne)为1.450,Nei′s遗传多样性指数(H)为0.277,Shannon多样性指数(I)为0.427,多态性位点百分比(PPL,percentage of polymorphic loci)为92.54%;种群内基因多样性(Hs)为0.1934,基因分化度(Gst)为0.3009,总遗传多样性指数(Ht)为0.2767,种群间的平均基因流(Nm)为1.1619,种群间的两两遗传分化固定指数值范围为0.002~0.527,平均值为0.325。系统聚类结果表明,兰属种群间遗传分化程度高,8个种群可分为3类,春兰和墨兰为一大类,寒兰、春剑、蕙兰、莲瓣兰、建兰为第二类,杂交种独为一类,与其他两类种群之间的遗传距离较大。主坐标分析表明,莲瓣兰和春兰表现出较远的亲缘关系。本研究筛选出6对引物构建了96个品种的指纹图谱二维码。本研究结果可为今后兰属新品种选育及品种鉴定提供重要依据。展开更多
Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported....Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.展开更多
The insect mitogenome is typically a compact circular molecule with highly conserved gene contents.Nonetheless,mitogenome structural variations have been reported in specific taxa,and gene rearrangements,usually the t...The insect mitogenome is typically a compact circular molecule with highly conserved gene contents.Nonetheless,mitogenome structural variations have been reported in specific taxa,and gene rearrangements,usually the tRNAs,occur in different lineages.Because synapomorphies of mitogenome organizations can provide information for phylogenetic inferences,comparative analyses of mitogenomes have been given increasing attention.However,most studies use a very few species to represent the whole genus,tribe,family,or even order,overlooking potential variations at lower taxonomic levels,which might lead to some incorrect inferences.To provide new insights into mitogenome organizations and their implications for phylogenetic inference,this study conducted comparative analyses for mitogenomes of three social bee tribes(Meliponini,Bombini,and Apini)based on the phylogenetic framework with denser taxonomic sampling at the species and population levels.Comparative analyses revealed that mitogenomes of Apini and Bombini are the typical type,while those of Meliponini show diverse variations in mitogenome sizes and organizations.Large inverted repeats(IRs)cause significant gene rearrangements of protein coding genes(PCGs)and rRNAs in Indo-Malay/Australian stingless bee species.Molecular evolution analyses showed that the lineage with IRs have lower dN/dS ratios for PCGs than lineages without IRs,indicating potential effects of IRs on the evolution of mitochondrial genes.The finding of IRs and different patterns of gene rearrangements suggested that Meliponini is a hotspot in mitogenome evolution.Unlike conserved PCGs and rRNAs whose rearrangements were found only in the mentioned lineages within Meliponini,tRNA rearrangements are common across all three tribes of social bees,and are significant even at the species level,indicating that comprehensive sampling is needed to fully understand the patterns of tRNA rearrangements,and their implications for phylogenetic inference.展开更多
文摘为加强我国兰属种质资源的保护利用,本研究通过ISSR分子标记对96份兰属种质进行多样性分析和指纹图谱构建。结果显示,共筛选出11条可扩增清晰条带的多样性引物,在96份材料共检测67条多态性条带,平均多态性条带比例为73.63%;等位基因数(Na)为1.925,有效等位基因数(Ne)为1.450,Nei′s遗传多样性指数(H)为0.277,Shannon多样性指数(I)为0.427,多态性位点百分比(PPL,percentage of polymorphic loci)为92.54%;种群内基因多样性(Hs)为0.1934,基因分化度(Gst)为0.3009,总遗传多样性指数(Ht)为0.2767,种群间的平均基因流(Nm)为1.1619,种群间的两两遗传分化固定指数值范围为0.002~0.527,平均值为0.325。系统聚类结果表明,兰属种群间遗传分化程度高,8个种群可分为3类,春兰和墨兰为一大类,寒兰、春剑、蕙兰、莲瓣兰、建兰为第二类,杂交种独为一类,与其他两类种群之间的遗传距离较大。主坐标分析表明,莲瓣兰和春兰表现出较远的亲缘关系。本研究筛选出6对引物构建了96个品种的指纹图谱二维码。本研究结果可为今后兰属新品种选育及品种鉴定提供重要依据。
文摘Jute mallow is a nutritious leafy vegetable. The leaves are rich in proteins, vitamins and essential amino acids. Molecular characterization of Jute mallow with focus on improvement of leaf yield is scarcely reported. In the present study, inter sequence simple repeats (ISSR) molecular markers were employed to assess genetic diversity and relationships of 83 accessions of Jute mallow from different parts of Africa and Asia conserved at the World Vegetable Center East and Southern Africa. A total of 89 bands were amplified by 8 ISSR primers. Number of polymorphic bands per primer ranged from 2 to 6 with an average of 2.75 bands per primer. Polymorphic information content (PIC) values ranged from 0.390 to 0.760 with average of 0.53. Average Nei’s gene diversity (h) and Shannon’s information index (I) were 0.335 and 0.494 respectively. The highest pairwise genetic distance was 0.431 observed in a population from East Africa accessions. PC1 and PC2 axis explained 21.69% and 11.66% of the total variation respectively. UPGMA cluster analysis grouped the accessions into six main clusters at genetic similarity coefficient of 0.53 as standard value for classification. These results have important implications for jute mallow breeding and conservation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB31000000)Science and Technology Basic Resources Investigation Program of China(2021FY100200)+1 种基金Yunnan Revitalization Talent Support Program“Young Talent”and"Innovation Team"Projectsthe 14th Five-Year Plan of Xishuangbanna Tropical Botanical Garden,Chinese Academy of Science(XTBG-1450101)。
文摘The insect mitogenome is typically a compact circular molecule with highly conserved gene contents.Nonetheless,mitogenome structural variations have been reported in specific taxa,and gene rearrangements,usually the tRNAs,occur in different lineages.Because synapomorphies of mitogenome organizations can provide information for phylogenetic inferences,comparative analyses of mitogenomes have been given increasing attention.However,most studies use a very few species to represent the whole genus,tribe,family,or even order,overlooking potential variations at lower taxonomic levels,which might lead to some incorrect inferences.To provide new insights into mitogenome organizations and their implications for phylogenetic inference,this study conducted comparative analyses for mitogenomes of three social bee tribes(Meliponini,Bombini,and Apini)based on the phylogenetic framework with denser taxonomic sampling at the species and population levels.Comparative analyses revealed that mitogenomes of Apini and Bombini are the typical type,while those of Meliponini show diverse variations in mitogenome sizes and organizations.Large inverted repeats(IRs)cause significant gene rearrangements of protein coding genes(PCGs)and rRNAs in Indo-Malay/Australian stingless bee species.Molecular evolution analyses showed that the lineage with IRs have lower dN/dS ratios for PCGs than lineages without IRs,indicating potential effects of IRs on the evolution of mitochondrial genes.The finding of IRs and different patterns of gene rearrangements suggested that Meliponini is a hotspot in mitogenome evolution.Unlike conserved PCGs and rRNAs whose rearrangements were found only in the mentioned lineages within Meliponini,tRNA rearrangements are common across all three tribes of social bees,and are significant even at the species level,indicating that comprehensive sampling is needed to fully understand the patterns of tRNA rearrangements,and their implications for phylogenetic inference.