Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Curre...Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.展开更多
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-z...BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway.展开更多
This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A Pub Me...This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A Pub Med search was conducted using the Me SH database, "Reperfusion" AND "liver transplantation" were the combined Me SH headings; EMBASE and the Cochrane library were also searched using the same terms. 52 relevant studies and one ongoing trial were found. The concept of post reperfusion syndrome has evolved through years to a multisystemic disorder. The implications of the main organ, recipient and procedure related factors in the genesis of this complex syndrome are discussed in the text as the novel pharmacologic and technical approaches to reduce its incidence. However the available evidence about risk factors, physiopathology and preventive measures is still confusing, the presence of two main definitions and the numerosity of possible confounding factors greatly complicates the interpretation of the studies.展开更多
Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central...Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central in the pathogenesis of IRI. Exogenous NO has emerged as a potential therapy for IRI based on its role in decreasing oxidative stress,cytokine release,leukocyte endothelial-adhesion and hepatic apoptosis. This review will highlight the influence of endogenous NO on hepatic IRI,role of inhaled NO in ameliorating IRI,modes of delivery,donor drugs and potential side effects of exogenous NO.展开更多
AIM:To determine whether Saiko-keishi-to(TJ-10),a Japanese herbal medicine,could protect liver injury induced by gut ischemia/reperfusion(I/R),and to investigate the role of NO. METHODS:Male Wistar rats were exposed t...AIM:To determine whether Saiko-keishi-to(TJ-10),a Japanese herbal medicine,could protect liver injury induced by gut ischemia/reperfusion(I/R),and to investigate the role of NO. METHODS:Male Wistar rats were exposed to 30-min gut isohemia followed by 60 min of reperfusion.Intravital microscopy was used to monitor leukocyte recruitment.Plasma tumor necrosis factor(TNF)levels and alanine aminotransferase (ALT)activities were measured.TJ-10 1 g/(kg.d)was intragastrically administered to rats for 7 d.A NO synthase inhibitor was administered. RESULTS:In control rats,gut I/R elicited increases in the number of stationary leukocytes,and plasma TNF levels and ALT activities were mitigated by pretreatment with TJ-10.Pretreatment with the NO synthase inhibitor diminished the protective effects of TJ-10 on leukostasis in the liver,and the increase of plasma TNF levels and ALT activities.Pretreatment with TJ-10 increased plasma nitrite/nitrate levels. CONCLUSION:TJ-10 attenuates the gut I/R-induced hepatic microvascular dysfunction and sequential hepatocellular injury via enhancement of NO production.展开更多
INTRODUCTIONFrom the technical aspect of liver surgery ,control of bleeding during hepatic parenchymal resection is one of the most important procedures in hepatectomy .Pringle,s maneuver ,a temporary cross-clamping ...INTRODUCTIONFrom the technical aspect of liver surgery ,control of bleeding during hepatic parenchymal resection is one of the most important procedures in hepatectomy .Pringle,s maneuver ,a temporary cross-clamping of the hepatoduodnal ligament ,has often been used for this purpose[1],This is the simplest and userul technique to reduce intraoperative blood loss .展开更多
Current antiplatelet drugs mainly focus on prevention rather than the more clinically relevant issue of clearance of an existing thrombus. We recently described a novel and effective therapeutic strategy for dissoluti...Current antiplatelet drugs mainly focus on prevention rather than the more clinically relevant issue of clearance of an existing thrombus. We recently described a novel and effective therapeutic strategy for dissolution of preexisting platelet thrombus in a murine ischemic stroke model with a bifunctional platelet GPIIIa49-66 ligand (Single-chain antibody Linked first Kringle 1 of plasminogen, named SLK), which homes to newly deposited fibrin strands tangled of platelet thrombus and induces aggregated platelet fragmentation. In this study, we perform in-depth analysis of the effect of SLK on myocardial ischemia-reperfusion (IR) injury in rats. We show that SLK dose-dependently reduces lactate dehydrogenase (LDH) release as well as mean infarction size of left ventricle. Histological observation demonstrates that the arterial thrombi in coronary arteries of rat almost disappear after SLK injection. Optimal dose of SLK (37.5 μg/ individual) provides the myocardial protection at 2 hours post-infusion. However, there are no significant protective effects if SLK was given at 4 or 8 hours post-infusion. The combined application of SLK and urokinase (UK) demonstrates greater myocardial protection than UK alone at 2 hours post-infusion. Thus, SLK could be used as a thrombolytic alternative in other arterial vascular beds associated with thrombosis to enhance fibrinolysis.展开更多
INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into ...INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into the preserving fluid and the grafted liver was rewarmed at different temperatures to protect the cell membranc and prevent ischemic-reperfusive injury.展开更多
Background The traditional Chinese medicine injury, but the mechanism of its action is not we protective role of Tongxinluo. Tongxinluo can protect myocardium against documented. We examined the involvement schaemia/r...Background The traditional Chinese medicine injury, but the mechanism of its action is not we protective role of Tongxinluo. Tongxinluo can protect myocardium against documented. We examined the involvement schaemia/reperfusion of nitric oxide in the Methods Miniswine were randomized to four groups of seven: sham, control, Tongxinluo and Tongxinluo coadministration with a nitric oxide synthase inhibitor N^ωnitro-L-arginine (L-NNA, 10 mg/kg i.v.). Three hours after administration of Tongxinluo, the animals were anaesthetised and the left anterior descending coronary artery ligated and maintained in situ for 90 minutes followed by 3 hours of reperfusion before death. Area of no reflow and necrosis and risk region were determined pathologically by planimetry. The degree of neutrophil accumulation in myocardium was obtained by measuring myeloperoxidase activity and histological analysis. Myocardial endothelial nitric oxide synthase activity and vascular endothelial cadherin content were measured by colorimetric method and immunoblotting analysis respectively. Results Tongxinluo significantly increased the local blood flow and limited the infarct and size of no reflow. Tongxinluo also attenuated myeloperoxidase activity and neutrophil accumulation in histological sections and maintained the level of vascular endothelial cadherin and endothelial nitric oxide synthase activity in the reflow region when compared with control group. The protection of Tongxinluo was counteracted by coadministration with L-NNA. Conclusions Tongxinluo may limit myocardial ischaemia and protect the heart against reperfusion injury. Tongxinluo regulates synthesis of nitric oxide by altering activity of endothelial nitric oxide synthase.展开更多
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition;this phenomenon is known as cerebral ischemia-reperfusion injury.Current studies have elucidated the neuroprotective role of the sirtuin protein family(Sirtuins)in modulating cerebral ischemia-reperfusion injury.However,the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration.In this review,the origin and research progress of Sirtuins are summarized,suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury,including inflammation,oxidative stress,blood-brain barrier damage,apoptosis,pyroptosis,and autophagy.The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways,such as nuclear factor-kappa B signaling,oxidative stress mediated by adenosine monophosphate-activated protein kinase,and the forkhead box O.This review also summarizes the potential of endogenous substances,such as RNA and hormones,drugs,dietary supplements,and emerging therapies that regulate Sirtuins expression.This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors.While Sirtuins show promise as a potential target for the treatment of cerebral ischemiareperfusion injury,most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans,potentially influencing the efficacy of Sirtuinstargeting drug therapies.Overall,this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
基金Supported by Natural Science Foundation of Sichuan Province,No.2022NSFSC0738Basic Research Funds for Central Universities,No.2682022ZTPY038Tibet Autonomous Region Science and Technology Planning Project,No.XZ2022RH001.
文摘BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/reperfusion injury(MI/RI).Shuxin decoction(SXT)is a proven recipe modification from the classic herbal formula"Wu-tou-chi-shi-zhi-wan"according to the traditional Chinese medicine theory.It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting.However,the underlying mechanism is still unclear.AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.METHODS This paper presents an ensemble model combining network pharmacology and biology.The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT.In parallel,therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus,DisGeNet,Genecards,Drugbank,OMIM,and PharmGKB.The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation,Visualization and Integrated Discovery.The major results of bioinformatics analysis were subsequently validated by animal experiments.RESULTS According to the hypothesis derived from bioinformatics analysis,SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein(LDL)and inhibiting the advanced glycation end products(AGE)-receptor for AGE(RAGE)signaling pathway.Subsequent animal experiments confirmed the hypothesis.The treatment with a dose of SXT(2.8 g/kg/d)resulted in a reduction in oxidized LDL,AGEs,and RAGE,and regulated the level of blood lipids.Besides,the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated,whereas Bcl-2 expression was up-regulated.The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes.Moreover,animal experiments verified that SXT could regulate the level of blood lipids,alleviate cardiomyocyte apoptosis,and improve cardiac function through the AGE-RAGE signaling pathway.
基金Supported by The Department of Anesthesiology of the University of Bologna
文摘This review aims at evaluating the existing evidence regarding post reperfusion syndrome, providing a description of the pathophysiologic mechanisms involved and possible management and preventive strategies. A Pub Med search was conducted using the Me SH database, "Reperfusion" AND "liver transplantation" were the combined Me SH headings; EMBASE and the Cochrane library were also searched using the same terms. 52 relevant studies and one ongoing trial were found. The concept of post reperfusion syndrome has evolved through years to a multisystemic disorder. The implications of the main organ, recipient and procedure related factors in the genesis of this complex syndrome are discussed in the text as the novel pharmacologic and technical approaches to reduce its incidence. However the available evidence about risk factors, physiopathology and preventive measures is still confusing, the presence of two main definitions and the numerosity of possible confounding factors greatly complicates the interpretation of the studies.
文摘Hepatic ischemia-reperfusion injury (IRI) occurs upon restoration of hepatic blood flow after a period of ischemia. Decreased endogenous nitric oxide (NO) production resulting in capillary luminal narrowing is central in the pathogenesis of IRI. Exogenous NO has emerged as a potential therapy for IRI based on its role in decreasing oxidative stress,cytokine release,leukocyte endothelial-adhesion and hepatic apoptosis. This review will highlight the influence of endogenous NO on hepatic IRI,role of inhaled NO in ameliorating IRI,modes of delivery,donor drugs and potential side effects of exogenous NO.
文摘AIM:To determine whether Saiko-keishi-to(TJ-10),a Japanese herbal medicine,could protect liver injury induced by gut ischemia/reperfusion(I/R),and to investigate the role of NO. METHODS:Male Wistar rats were exposed to 30-min gut isohemia followed by 60 min of reperfusion.Intravital microscopy was used to monitor leukocyte recruitment.Plasma tumor necrosis factor(TNF)levels and alanine aminotransferase (ALT)activities were measured.TJ-10 1 g/(kg.d)was intragastrically administered to rats for 7 d.A NO synthase inhibitor was administered. RESULTS:In control rats,gut I/R elicited increases in the number of stationary leukocytes,and plasma TNF levels and ALT activities were mitigated by pretreatment with TJ-10.Pretreatment with the NO synthase inhibitor diminished the protective effects of TJ-10 on leukostasis in the liver,and the increase of plasma TNF levels and ALT activities.Pretreatment with TJ-10 increased plasma nitrite/nitrate levels. CONCLUSION:TJ-10 attenuates the gut I/R-induced hepatic microvascular dysfunction and sequential hepatocellular injury via enhancement of NO production.
基金This work was supported partly by Grant 90089102 from the Scientific Research Fund of the Ministry of Education,Japan
文摘INTRODUCTIONFrom the technical aspect of liver surgery ,control of bleeding during hepatic parenchymal resection is one of the most important procedures in hepatectomy .Pringle,s maneuver ,a temporary cross-clamping of the hepatoduodnal ligament ,has often been used for this purpose[1],This is the simplest and userul technique to reduce intraoperative blood loss .
文摘Current antiplatelet drugs mainly focus on prevention rather than the more clinically relevant issue of clearance of an existing thrombus. We recently described a novel and effective therapeutic strategy for dissolution of preexisting platelet thrombus in a murine ischemic stroke model with a bifunctional platelet GPIIIa49-66 ligand (Single-chain antibody Linked first Kringle 1 of plasminogen, named SLK), which homes to newly deposited fibrin strands tangled of platelet thrombus and induces aggregated platelet fragmentation. In this study, we perform in-depth analysis of the effect of SLK on myocardial ischemia-reperfusion (IR) injury in rats. We show that SLK dose-dependently reduces lactate dehydrogenase (LDH) release as well as mean infarction size of left ventricle. Histological observation demonstrates that the arterial thrombi in coronary arteries of rat almost disappear after SLK injection. Optimal dose of SLK (37.5 μg/ individual) provides the myocardial protection at 2 hours post-infusion. However, there are no significant protective effects if SLK was given at 4 or 8 hours post-infusion. The combined application of SLK and urokinase (UK) demonstrates greater myocardial protection than UK alone at 2 hours post-infusion. Thus, SLK could be used as a thrombolytic alternative in other arterial vascular beds associated with thrombosis to enhance fibrinolysis.
基金the Natural Science Fund of Liaoning Province,No.962280
文摘INTRODUCTIONThe incidence of primary non-function(PNF)of grafted liver in the early postoperative stage is 2%-23%[1-4],its main cause is the ischemic-rechemic injure[5,6].In this experiment,anisodamine was added into the preserving fluid and the grafted liver was rewarmed at different temperatures to protect the cell membranc and prevent ischemic-reperfusive injury.
文摘Background The traditional Chinese medicine injury, but the mechanism of its action is not we protective role of Tongxinluo. Tongxinluo can protect myocardium against documented. We examined the involvement schaemia/reperfusion of nitric oxide in the Methods Miniswine were randomized to four groups of seven: sham, control, Tongxinluo and Tongxinluo coadministration with a nitric oxide synthase inhibitor N^ωnitro-L-arginine (L-NNA, 10 mg/kg i.v.). Three hours after administration of Tongxinluo, the animals were anaesthetised and the left anterior descending coronary artery ligated and maintained in situ for 90 minutes followed by 3 hours of reperfusion before death. Area of no reflow and necrosis and risk region were determined pathologically by planimetry. The degree of neutrophil accumulation in myocardium was obtained by measuring myeloperoxidase activity and histological analysis. Myocardial endothelial nitric oxide synthase activity and vascular endothelial cadherin content were measured by colorimetric method and immunoblotting analysis respectively. Results Tongxinluo significantly increased the local blood flow and limited the infarct and size of no reflow. Tongxinluo also attenuated myeloperoxidase activity and neutrophil accumulation in histological sections and maintained the level of vascular endothelial cadherin and endothelial nitric oxide synthase activity in the reflow region when compared with control group. The protection of Tongxinluo was counteracted by coadministration with L-NNA. Conclusions Tongxinluo may limit myocardial ischaemia and protect the heart against reperfusion injury. Tongxinluo regulates synthesis of nitric oxide by altering activity of endothelial nitric oxide synthase.