The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge...The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.展开更多
Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-m...Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.展开更多
The effect of repetitive pulsed microwaves (10 GHz, pulse duration of 100-300 ns, pulse repetition rate of 4-25 pulse per second, peak power density of 0.04-3.5 kW/cm^2) on mastocytoma P815, Ehrlich carcinoma, norma...The effect of repetitive pulsed microwaves (10 GHz, pulse duration of 100-300 ns, pulse repetition rate of 4-25 pulse per second, peak power density of 0.04-3.5 kW/cm^2) on mastocytoma P815, Ehrlich carcinoma, normal spleen cells and wound healing was investigated. It was found that short-time irradiation with an intensity of 0.9-1.5 kW/cm^2 inhibited proliferation of tumor cells in vitro, whereas at same time it contributes to proliferation of normal spleen cells in vitro. The repetitive pulsed microwaves with an intensity of 0.04-1.5 kW/cm^2 stimulated healing of skin wounds and ulcerations in mice. The effects showed a dependence on the pulse repetition rate and irradiation intensity.展开更多
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
Repetitve nanosecond impulses in gas-insulated metal-enclosed switchgear (GIS) are likely to trigger inside flashover. Interface charges on the spacer in GIS are considered one of the main factors damaging insulation ...Repetitve nanosecond impulses in gas-insulated metal-enclosed switchgear (GIS) are likely to trigger inside flashover. Interface charges on the spacer in GIS are considered one of the main factors damaging insulation performance and may be induced by overvoltage. For good understanding of insulation failures, accumulation characteristics of charges between SF6 and epoxy spacers under repetitive nanosecond impulses are investigated. It can be found under nanosecond impulses, the charge source in gas volume contributes to interface charge accumulation predominantly. Interface charges will be promoted by impulse number and amplitude. Accumulation processes are analyzed based on runaway electrons mechanism. When impulse amplitude exceeds a threshold value, discharge in the gas volume turns to a runaway mode. A runaway electron leads to the interface charge accumulation. Affected by motion of the runaway electrons, the potential peak gradually moves close to the grounded electrode when impulse amplitude is raised. Meanwhile, increasing impulse number can enhance surface potential. Surface potential will reach saturation eventually. However, memory effect of the repetitive impulse discharge makes the half-peak width of the surface potential at the interface change little. Design of GIS gas-solid insulations can refer to this research.展开更多
Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The ele...Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.展开更多
In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer diele...In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer dielectric samples is presented. The measurement-acquisition and control system not only records breakdown voltage and current, and time-to-breakdown duration, but also provides a real-time power-off protection for the power supply. Furthermore, the number of applied pulses can be calculated by the product of the time-to-breakdown duration and repetition rate. When the measured time-to-breakdown duration error is taken into account, the repetition rate of applied nanosecond-pulses should be below 40kHz. In addition, some experimental data on repetitive nanosecond-pulse breakdown of polymer films are presented and discussed.展开更多
Atmospheric pressure discharges excited by repetitive nanosecond pulses have at- tracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive ...Atmospheric pressure discharges excited by repetitive nanosecond pulses have at- tracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment con- ditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, anda diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse cur- rents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images.展开更多
Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide rada...Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.展开更多
Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classificati...Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation.展开更多
Operating conditions of film capacitors are complex,and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious.Degradation of the film under repetitively pulsed voltage c...Operating conditions of film capacitors are complex,and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious.Degradation of the film under repetitively pulsed voltage cannot be accurately evaluated by the average breakdown electric field.In this paper,the effects of pulsed electric field and pulse repetition frequency on the breakdown in biaxially oriented polypropylene(BOPP)films are investigated.Three phases of BOPP degradation are proposed based on the voltage amplitude,i.e.,maintenance(M),decline(D),and near-zero(N).Evolution of the BOPP film from degradation to breakdown at different frequencies is presented.Meanwhile,transition of discharge mode and elemental composition of the film are analyzed.Experimental results show continuous heat generation under repetitive microsecond pulses is the dominant factor for degradation of BOPP film.The number of applied pulses and the repetitive stressing time decrease exponentially with increase of frequency.This research can be contributed to the safe and reliable operation of capacitors.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrie...The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.展开更多
Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing...Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.展开更多
In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as ...In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as a function of pulse repetition frequency(PRF) and duty cycle.A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density.The result shows that the accumulation temperature increases with PRF increasing and the threshold for the transistor is about 2 kHz.The response of the peak temperature induced by the injected single pulses indicates that the falling time is much longer than the rising time.Adopting the fitting method,the relationship between the peak temperature and the time during the rising edge and that between the peak temperature and the time during the falling edge are obtained.Moreover,the accumulation temperature decreases with duty cycle increasing for a certain mean power.展开更多
We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fib...We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μm is used to raise the threshold of the stimulated Brillouin scattering(SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate(LBO) crystal and betabarium borate(BBO) crystal for realizing the second-harmonic generation(SHG) and fourth-harmonic generation(FHG),we achieve 17 μJ(1.73 W) and 0.66 μJ(66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.展开更多
Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the dischar...Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the discharges are investigated by means of time-resolved imaging and optical emission spectroscopy with respect to the discharge morphology,gas temperature,electron density,and excited species.The evolution of micro-discharges is captured by intensified CCD camera and electrical properties.The gas temperature is diagnosed by a two-temperature fit to the ro-vibrational OH(A^(2)Σ^(+)–X^П(2),0–0)emission band and is found to remain low at 425 K during the discharge pulses.The profile of electron density performed by the Stark broadening of Ha 656.1-nm and He I 667.8-nm lines is uniform across the discharge gap at the initial of discharge and reaches as high as 10^(23)m^(-3).The excited species of He,OH,and H show different spatio-temporal behaviors from each other by the measurement of their emission intensities,which are discussed qualitatively in regard of their plasma kinetics.展开更多
Zirconium (Zr) thin films deposited on Si (100) by pulsed laser deposition (PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray di...Zirconium (Zr) thin films deposited on Si (100) by pulsed laser deposition (PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction (XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser-plasma interaction, the deposition rate significantly decreases from 0.0431 A/pulse at 2 Hz to 0.0189A/pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy (AFM). The root mean square (RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate. The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.展开更多
We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the...We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.展开更多
Based on propagation-rate equations, the influence of different input pulse durations on the properties of Er^3+/Yb^3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteris...Based on propagation-rate equations, the influence of different input pulse durations on the properties of Er^3+/Yb^3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multichannel input pulses are amplified, the shorter the input pulse duration is, the smaller the power sags of output pulse will be. At low repetition rate, upper gain values(Gupper) of gain swing are almost the same for different input pulse durations, which tend to the small signal gain, but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At highrepetition rate, lower gain value(Glower) approaches to upper gain value(Glower).展开更多
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB209405)National Natural Science Foundation of China(No.51207154)the Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University of China(No.EIPE12204)
文摘The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
基金supported by National Natural Science Foundation of China(Nos.11076026,50707032)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KGCX2-YW-339)Opening Project of State Key Laboratory of Polymer Materials Engineering in Sichuan University(No.KF201103)
文摘Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime, Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.
文摘The effect of repetitive pulsed microwaves (10 GHz, pulse duration of 100-300 ns, pulse repetition rate of 4-25 pulse per second, peak power density of 0.04-3.5 kW/cm^2) on mastocytoma P815, Ehrlich carcinoma, normal spleen cells and wound healing was investigated. It was found that short-time irradiation with an intensity of 0.9-1.5 kW/cm^2 inhibited proliferation of tumor cells in vitro, whereas at same time it contributes to proliferation of normal spleen cells in vitro. The repetitive pulsed microwaves with an intensity of 0.04-1.5 kW/cm^2 stimulated healing of skin wounds and ulcerations in mice. The effects showed a dependence on the pulse repetition rate and irradiation intensity.
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.
基金supported in part by the National Natural Science Foundation of China(No.51877080)。
文摘Repetitve nanosecond impulses in gas-insulated metal-enclosed switchgear (GIS) are likely to trigger inside flashover. Interface charges on the spacer in GIS are considered one of the main factors damaging insulation performance and may be induced by overvoltage. For good understanding of insulation failures, accumulation characteristics of charges between SF6 and epoxy spacers under repetitive nanosecond impulses are investigated. It can be found under nanosecond impulses, the charge source in gas volume contributes to interface charge accumulation predominantly. Interface charges will be promoted by impulse number and amplitude. Accumulation processes are analyzed based on runaway electrons mechanism. When impulse amplitude exceeds a threshold value, discharge in the gas volume turns to a runaway mode. A runaway electron leads to the interface charge accumulation. Affected by motion of the runaway electrons, the potential peak gradually moves close to the grounded electrode when impulse amplitude is raised. Meanwhile, increasing impulse number can enhance surface potential. Surface potential will reach saturation eventually. However, memory effect of the repetitive impulse discharge makes the half-peak width of the surface potential at the interface change little. Design of GIS gas-solid insulations can refer to this research.
基金supported by the Science Foundation for the Excellent Doctor Dissertations of Ministry of Education of China (No. 200338)the State Natural Sciences Foundation of China (Nos. 50937004, 50777051)
文摘Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50707032 and 50437020)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-339)the State Key Laboratory of Controland Simulation of Power System and Generation Equipment in Tsinghua University (Grant No. SKLD09KZ05)
文摘In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer dielectric samples is presented. The measurement-acquisition and control system not only records breakdown voltage and current, and time-to-breakdown duration, but also provides a real-time power-off protection for the power supply. Furthermore, the number of applied pulses can be calculated by the product of the time-to-breakdown duration and repetition rate. When the measured time-to-breakdown duration error is taken into account, the repetition rate of applied nanosecond-pulses should be below 40kHz. In addition, some experimental data on repetitive nanosecond-pulse breakdown of polymer films are presented and discussed.
基金supported by National Natural Science Foundation of China (Nos.51006027,51437002,and 51477035)
文摘Atmospheric pressure discharges excited by repetitive nanosecond pulses have at- tracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment con- ditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, anda diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse cur- rents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images.
基金supported by the National Natural Science Foundation of China(61801143,61971155)the National Natural Science Foundation of Heilongjiang Province(LH2020F019).
文摘Pulse repetition interval(PRI)modulation recognition and pulse sequence search are significant for effective electronic support measures.In modern electromagnetic environments,different types of inter-pulse slide radars are highly confusing.There are few available training samples in practical situations,which leads to a low recognition accuracy and poor search effect of the pulse sequence.In this paper,an approach based on bi-directional long short-term memory(BiLSTM)networks and the temporal correlation algorithm for PRI modulation recognition and sequence search under the small sample prerequisite is proposed.The simulation results demonstrate that the proposed algorithm can recognize unilinear,bilinear,sawtooth,and sinusoidal PRI modulation types with 91.43% accuracy and complete the pulse sequence search with 30% missing pulses and 50% spurious pulses under the small sample prerequisite.
基金supported by the National Defense Science and Technology Outstanding Youth Science Fund Project(2018-JCJQ-ZQ-023)the Hunan Provincial Natural Science Foundation of Innovation Research Group Project(2019JJ10004)。
文摘Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation.
基金supported in part by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid under Grant U2166215.
文摘Operating conditions of film capacitors are complex,and the problem of film insulation failure caused by repetitively pulsed voltage is becoming ever serious.Degradation of the film under repetitively pulsed voltage cannot be accurately evaluated by the average breakdown electric field.In this paper,the effects of pulsed electric field and pulse repetition frequency on the breakdown in biaxially oriented polypropylene(BOPP)films are investigated.Three phases of BOPP degradation are proposed based on the voltage amplitude,i.e.,maintenance(M),decline(D),and near-zero(N).Evolution of the BOPP film from degradation to breakdown at different frequencies is presented.Meanwhile,transition of discharge mode and elemental composition of the film are analyzed.Experimental results show continuous heat generation under repetitive microsecond pulses is the dominant factor for degradation of BOPP film.The number of applied pulses and the repetitive stressing time decrease exponentially with increase of frequency.This research can be contributed to the safe and reliable operation of capacitors.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
基金Project supported by the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.
基金Projects(61171133,61271442)supported by the National Natural Science Foundation of ChinaProject(61025006)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(B110404)supported by the Innovation Program for Excellent Postgraduates of National University of Defense Technology,China
文摘Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60776034)
文摘In the present paper we conduct a theoretical study of the thermal accumulation effect of a typical bipolar transistor caused by high power pulsed microwaves(HPMs),and investigate the thermal accumulation effect as a function of pulse repetition frequency(PRF) and duty cycle.A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density.The result shows that the accumulation temperature increases with PRF increasing and the threshold for the transistor is about 2 kHz.The response of the peak temperature induced by the injected single pulses indicates that the falling time is much longer than the rising time.Adopting the fitting method,the relationship between the peak temperature and the time during the rising edge and that between the peak temperature and the time during the falling edge are obtained.Moreover,the accumulation temperature decreases with duty cycle increasing for a certain mean power.
基金Project supported by the Key Program of Beijing Municipal Natural Science Foundation, China (Grant No. KZ201910005006)the National Nature Science Foundation of China (Grant No. 62005004)+1 种基金the Natural Science Foundation of Beijing Municipality, China (Grant No. 4204091)the National Science Foundation for Postdoctor Scientists of China (Grant No. 212423)。
文摘We report on a compact, stable, all-fiberized narrow-linewidth(0.045 nm) pulsed laser source emitting laser beam with a wavelength of 266 nm, and tunable pulse width and repetition rate. The system is based on all-fiberized nanosecond amplifier architecture, which consists of Yb-doped fiber preamplifiers and a super-large-mode-area Yb-doped fiber power amplifier. The fiber amplifier with a core of 50 μm is used to raise the threshold of the stimulated Brillouin scattering(SBS) effect and to obtain high output power and single pulse energy. Using lithium triborate(LBO) crystal and betabarium borate(BBO) crystal for realizing the second-harmonic generation(SHG) and fourth-harmonic generation(FHG),we achieve 17 μJ(1.73 W) and 0.66 μJ(66 mW), respectively, at wavelengths of 532 nm and 266 nm and a repetition rate of 100 kHz with pulse width of 4 ns. This source has great potential applications in fluorescence research and solar-blind ultraviolet optical communication.
基金supported by the National Natural Science Foundation of China(Grant No.51806186)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.20KJB140025)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20181050)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Grant No.XJR2020)。
文摘Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5%water vapor between two pin electrodes are generated with nanosecond overvoltage pulses.The temporal and spatial characteristics of the discharges are investigated by means of time-resolved imaging and optical emission spectroscopy with respect to the discharge morphology,gas temperature,electron density,and excited species.The evolution of micro-discharges is captured by intensified CCD camera and electrical properties.The gas temperature is diagnosed by a two-temperature fit to the ro-vibrational OH(A^(2)Σ^(+)–X^П(2),0–0)emission band and is found to remain low at 425 K during the discharge pulses.The profile of electron density performed by the Stark broadening of Ha 656.1-nm and He I 667.8-nm lines is uniform across the discharge gap at the initial of discharge and reaches as high as 10^(23)m^(-3).The excited species of He,OH,and H show different spatio-temporal behaviors from each other by the measurement of their emission intensities,which are discussed qualitatively in regard of their plasma kinetics.
基金supported by the National Natural Science Foundation of China(Grant No.91126001)
文摘Zirconium (Zr) thin films deposited on Si (100) by pulsed laser deposition (PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction (XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser-plasma interaction, the deposition rate significantly decreases from 0.0431 A/pulse at 2 Hz to 0.0189A/pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy (AFM). The root mean square (RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate. The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61675009)the Beijing Natural Science Foundation Program, China,Scientific Research Key Program of Beijing Municipal Education Commission, China (Grant No. KZ201910005006)
文摘We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.
文摘Based on propagation-rate equations, the influence of different input pulse durations on the properties of Er^3+/Yb^3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multichannel input pulses are amplified, the shorter the input pulse duration is, the smaller the power sags of output pulse will be. At low repetition rate, upper gain values(Gupper) of gain swing are almost the same for different input pulse durations, which tend to the small signal gain, but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At highrepetition rate, lower gain value(Glower) approaches to upper gain value(Glower).