期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microstructure and mechanical properties of AZ31-Mg_2Si in situ composite fabricated by repetitive upsetting 被引量:4
1
作者 郭炜 王渠东 +2 位作者 叶兵 周浩 刘鉴锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3755-3761,共7页
AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite ele... AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite element analysis of the material flow indicates that deformation concentrates in the bottom region of the sample after 1 pass, and much more uniform deformation is obtained after 5 passes. During multi-pass RU process, both dendritic and Chinese script type Mg2Si phases are broken up into smaller particles owing to the shear stress forced by the matrix. With the increasing number of RU passes, finer grain size and more homogeneous distribution of Mg2Si particles are obtained along with significant enhancement in both strength and ductility. AZ31-4.6%Mg2Si composite exhibits tensile strength of 284 MPa and elongation of 9.8%after 5 RU passes at 400 ℃ compared with the initial 128 MPa and 5.4%of original AZ31-4.6%Mg2Si composite. 展开更多
关键词 AZ31-Mg2Si composite Mg2Si particle repetitive upsetting microstructure mechanical properties
下载PDF
Microstructural evolution and mechanical properties of Mg-9.8Gd-2.7Y-0.4Zr alloy produced by repetitive upsetting 被引量:7
2
作者 H.Zhou H.Y.Ning +6 位作者 X.L.Ma D.D.Yin L.R.Xiao X.C.Sha Y.D.Yu Q.D.Wang Y.S.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第7期1067-1075,共9页
A newly developed severe plastic deformation (SPD) technique, i.e. repetitive upsetting (RU), is employed to improve the strength and ductility of a Mg-Gd-Y-Zr alloy. During the RU processing, dynamic recrystalliz... A newly developed severe plastic deformation (SPD) technique, i.e. repetitive upsetting (RU), is employed to improve the strength and ductility of a Mg-Gd-Y-Zr alloy. During the RU processing, dynamic recrystallization occurs in the Mg alloy, which leads to a significant grain refinement from 11.2 p.m to 2.8 μm. The yield strength (YS), ultimate tensile strength (UTS) and elongation increase simultaneously with increasing RU passes. The microstructural evolution is affected by processing temperatures. Dynamic recrystallization prevails at low temperatures, while dynamic recovery is the main effect factor at high temperatures. Texture characteristics gradually become random during multiple passes of RU processing, which reduces the tension-compression asymmetry of the Mg-Gd-Y-Zr alloy. 2018 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. 展开更多
关键词 Severe plastic deformation (SPD) repetitive upsetting (RU) Mg-RE alloy Mechanical properties
原文传递
Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion 被引量:1
3
作者 Zhengran Liu Xi Zhao +4 位作者 Kai Chen Siqi Wang Xianwei Ren Zhimin Zhang Yong Xue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第5期839-852,共14页
The isothermal repetitive upsetting extrusion(RUE)was implemented to process ZK60 magnesium alloy at 380℃.Then,the relationship between the microstructural characters,including grain refinement and texture evolution,... The isothermal repetitive upsetting extrusion(RUE)was implemented to process ZK60 magnesium alloy at 380℃.Then,the relationship between the microstructural characters,including grain refinement and texture evolution,and the mechanical performance of the alloy was investigated.Results showed that after 3 passes of RUE,the average grain size was refined from 115.0 to 26.5μm,which was mainly caused by the continuous dynamic recrystallization and discontinuous dynamic recrystallization.Meanwhile,the elongation of the alloy increased from 13.8 to 21.6%,and the superplasticity(142%)of the alloy has been achieved in the following high temperature tensile test,which is very beneficial for the further processing of the alloy into components.In particular,the alloy formed a distinctive texture distributed between<2-1-11>and<2-1-14>,which was greatly related to the Schmid factor of extrusion direction(ED)and transverse direction(TD).This texture changed the initiation ability of basal and prismatic slip in both directions and inhibited the initiation of partial tensile twinning in TD;thus,the anisotropy in both directions was weakened.As expected,the tensile yield strength difference decreased from25.9 to 3.4 MPa,but it was used as the cost of tensile yield strength in ED. 展开更多
关键词 Severe plastic deformation repetitive upsetting extrusion ZK60 alloy Microstructure Mechanical properties
原文传递
Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy
4
作者 Li Zhang Qudong Wang +4 位作者 Wenjun Liao Wei Guo Bing Ye Haiyan Jiang Wenjiang Ding 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第9期935-940,共6页
The current research investigates the effect of homogenization on the microstructure and mechanical properties of the AZ91 D alloy processed by repetitive upsetting(RU). Results show that during RU processing, the i... The current research investigates the effect of homogenization on the microstructure and mechanical properties of the AZ91 D alloy processed by repetitive upsetting(RU). Results show that during RU processing, the initial large Mg;Al;particles in the as-cast specimen accelerate the dynamic recrystallization(DRX) due to the particle stimulating nucleation(PSN) mechanism. With the progress of RU,the inherent large strain breaks the large second phases into small fragments, which indicates the PSN gradually disappears, while the pinning effect becomes obvious. As for the homogenized specimen, a pre-heat treatment leads to the absence of Mg;Al;particles but a uniform distribution of Al atoms in the Mg alloy. Though the subsequent RU promotes the precipitation of Mg;Al;particles, the relatively small particle size and the uniform distribution are more favorable to act as obstacles for grain growth than contributors to PSN. Finally, a more homogeneous and refined microstructure is obtained in the specimen with prior homogenization than the as-cast one. 展开更多
关键词 repetitive upsetting Magnesium alloy Microstructure PRECIPITATES Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部