期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Changes in the root system of the herbaceous peony and soil properties under different years of continuous planting and replanting 被引量:2
1
作者 Anqi Xie Limin Sun +4 位作者 Dongliang Zhang Yang Li Zemiao Liu Xue Li Xia Sun 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期801-810,共10页
The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvl... The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony. 展开更多
关键词 Herbaceous peony replanting problems Continuous planting Soil environment Phenolic acids PAEONIFLORIN
下载PDF
Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality 被引量:28
2
作者 Linlin Dong Jiang Xu +7 位作者 Lianjuan Zhang Ruiyang Cheng Guangfei Wei He Su Juan Yang Jun Qian Ran Xu Shilin Chen 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2018年第2期272-282,共11页
The cultivation of Panax plants is hindered by replanting problems, which may be caused by plantdriven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanti... The cultivation of Panax plants is hindered by replanting problems, which may be caused by plantdriven changes in the soil microbial community. Inoculation with microbial antagonists may efficiently alleviate replanting issues. Through high-throughput sequencing, this study revealed that bacterial diversity decreased,whereas fungal diversity increased, in the rhizosphere soils of adult ginseng plants at the root growth stage under different ages. Few microbial community, such as Luteolibacter, Cytophagaceae, Luteibacter, Sphingomonas,Sphingomonadaceae, and Zygomycota, were observed; the relative abundance of microorganisms, namely,Brevundimonas, Enterobacteriaceae, Pandoraea, Cantharellales, Dendryphion, Fusarium, and Chytridiomycota,increased in the soils of adult ginseng plants compared with those in the soils of 2-year-old seedlings. Bacillus subtilis 50-1, a microbial antagonist against the pathogenic Fusarium oxysporum, was isolated through a dual culture technique. These bacteria acted with a biocontrol efficacy of 67.8%. The ginseng death rate and Fusarium abundance decreased by 63.3% and 46.1%, respectively, after inoculation with B. subtilis 50-1. Data revealed that microecological degradation could result from ginseng-driven changes in rhizospheric microbial communities;these changes are associated with the different ages and developmental stages of ginseng plants. Biocontrol using microbial antagonists alleviated the replanting problem. 展开更多
关键词 Panax ginseng Microbial communities replanting problem High-throughput sequencing Different ages BIOREMEDIATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部