Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk...Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti...For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset.展开更多
The IEEE802.15.4 standard has been widely used in modern industry due to its several benefits for stability,scalability,and enhancement of wireless mesh networking.This standard uses a physical layer of binary phase-s...The IEEE802.15.4 standard has been widely used in modern industry due to its several benefits for stability,scalability,and enhancement of wireless mesh networking.This standard uses a physical layer of binary phase-shift keying(BPSK)modulation and can be operated with two frequency bands,868 and 915 MHz.The frequency noise could interfere with the BPSK signal,which causes distortion to the signal before its arrival at receiver.Therefore,filtering the BPSK signal from noise is essential to ensure carrying the signal from the sen-der to the receiver with less error.Therefore,removing signal noise in the BPSK signal is necessary to mitigate its negative sequences and increase its capability in industrial wireless sensor networks.Moreover,researchers have reported a posi-tive impact of utilizing the Kalmen filter in detecting the modulated signal at the receiver side in different communication systems,including ZigBee.Mean-while,artificial neural network(ANN)and machine learning(ML)models outper-formed results for predicting signals for detection and classification purposes.This paper develops a neural network predictive detection method to enhance the performance of BPSK modulation.First,a simulation-based model is used to generate the modulated signal of BPSK in the IEEE802.15.4 wireless personal area network(WPAN)standard.Then,Gaussian noise was injected into the BPSK simulation model.To reduce the noise of BPSK phase signals,a recurrent neural networks(RNN)model is implemented and integrated at the receiver side to esti-mate the BPSK’s phase signal.We evaluated our predictive-detection RNN model using mean square error(MSE),correlation coefficient,recall,and F1-score metrics.The result shows that our predictive-detection method is superior to the existing model due to the low MSE and correlation coefficient(R-value)metric for different signal-to-noise(SNR)values.In addition,our RNN-based model scored 98.71%and 96.34%based on recall and F1-score,respectively.展开更多
Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep lea...Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep learning-basedConvolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which usedas the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extractionand temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesionphotos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-TermMemory (LSTM) for temporal dependencies, the model achieves a high average recognition accuracy, surpassingprevious methods. The comprehensive evaluation, including accuracy, precision, recall, and F1-score, underscoresthe model’s competence in categorizing skin cancer types. This research contributes a sophisticated model andvaluable guidance for deep learning-based diagnostics, also this model excels in overcoming spatial and temporalcomplexities, offering a sophisticated solution for dermatological diagnostics research.展开更多
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t...For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv...Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.展开更多
使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆...使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆状态。在中国香港天文台(Hong Kong Observatorg,HKO)的HKO-7数据集的基础上筛选雷暴数据,构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法,虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络,雷暴回波外推的预测效果更好,尤其是强回波的预测效果更好。展开更多
This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore...This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods.展开更多
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t...The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.展开更多
In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.F...In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information.展开更多
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus...The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.展开更多
Due to the increase in the types of business and equipment in telecommunications companies,the performance index data collected in the operation and maintenance process varies greatly.The diversity of index data makes...Due to the increase in the types of business and equipment in telecommunications companies,the performance index data collected in the operation and maintenance process varies greatly.The diversity of index data makes it very difficult to perform high-precision capacity prediction.In order to improve the forecasting efficiency of related indexes,this paper designs a classification method of capacity index data,which divides the capacity index data into trend type,periodic type and irregular type.Then for the prediction of trend data,it proposes a capacity index prediction model based on Recurrent Neural Network(RNN),denoted as RNN-LSTM-LSTM.This model includes a basic RNN,two Long Short-Term Memory(LSTM)networks and two Fully Connected layers.The experimental results show that,compared with the traditional Holt-Winters,Autoregressive Integrated Moving Average(ARIMA)and Back Propagation(BP)neural network prediction model,the mean square error(MSE)of the proposed RNN-LSTM-LSTM model are reduced by 11.82%and 20.34%on the order storage and data migration,which has greatly improved the efficiency of trend-type capacity index prediction.展开更多
文摘Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
文摘For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset.
基金This research was funded by the ministry of education and the deanship of scientific research at Najran University,Kingdom of Saudi Arabia,for financial and technical support under code number(NU/-/SERC/10/641).
文摘The IEEE802.15.4 standard has been widely used in modern industry due to its several benefits for stability,scalability,and enhancement of wireless mesh networking.This standard uses a physical layer of binary phase-shift keying(BPSK)modulation and can be operated with two frequency bands,868 and 915 MHz.The frequency noise could interfere with the BPSK signal,which causes distortion to the signal before its arrival at receiver.Therefore,filtering the BPSK signal from noise is essential to ensure carrying the signal from the sen-der to the receiver with less error.Therefore,removing signal noise in the BPSK signal is necessary to mitigate its negative sequences and increase its capability in industrial wireless sensor networks.Moreover,researchers have reported a posi-tive impact of utilizing the Kalmen filter in detecting the modulated signal at the receiver side in different communication systems,including ZigBee.Mean-while,artificial neural network(ANN)and machine learning(ML)models outper-formed results for predicting signals for detection and classification purposes.This paper develops a neural network predictive detection method to enhance the performance of BPSK modulation.First,a simulation-based model is used to generate the modulated signal of BPSK in the IEEE802.15.4 wireless personal area network(WPAN)standard.Then,Gaussian noise was injected into the BPSK simulation model.To reduce the noise of BPSK phase signals,a recurrent neural networks(RNN)model is implemented and integrated at the receiver side to esti-mate the BPSK’s phase signal.We evaluated our predictive-detection RNN model using mean square error(MSE),correlation coefficient,recall,and F1-score metrics.The result shows that our predictive-detection method is superior to the existing model due to the low MSE and correlation coefficient(R-value)metric for different signal-to-noise(SNR)values.In addition,our RNN-based model scored 98.71%and 96.34%based on recall and F1-score,respectively.
文摘Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep learning-basedConvolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which usedas the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extractionand temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesionphotos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-TermMemory (LSTM) for temporal dependencies, the model achieves a high average recognition accuracy, surpassingprevious methods. The comprehensive evaluation, including accuracy, precision, recall, and F1-score, underscoresthe model’s competence in categorizing skin cancer types. This research contributes a sophisticated model andvaluable guidance for deep learning-based diagnostics, also this model excels in overcoming spatial and temporalcomplexities, offering a sophisticated solution for dermatological diagnostics research.
文摘For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
基金the Natural Science Foundation of China(NSFC)(61873024,61773053)the China Central Universities of USTB(FRF-TP-19-049A1Z)the National Key RD Program of China(2017YFB0306403)。
文摘Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.
文摘使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆状态。在中国香港天文台(Hong Kong Observatorg,HKO)的HKO-7数据集的基础上筛选雷暴数据,构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法,虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络,雷暴回波外推的预测效果更好,尤其是强回波的预测效果更好。
基金supported by National Natural Science Foundation of China (No. 60874025)Natural Science Foundation of Hunan Province of China (No. 10JJ6098)
文摘This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods.
基金the National Natural Science Foundation of China (No. 60504024)the Research Project of Zhejiang Provin-cial Education Department (No. 20050905), China
文摘The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.
文摘In order to increase the accuracy rate of emotion recognition in voiceand video,the mixed convolutional neural network(CNN)and recurrent neural network(RNN)ae used to encode and integrate the two information sources.For the audio signals,several frequency bands as well as some energy functions are extacted as low-level features by using a sophisticated audio technique,and then they are encoded w it a one-dimensional(I D)convolutional neural network to abstact high-level features.Finally,tiese are fed into a recurrent neural network for te sake of capturing dynamic tone changes in a temporal dimensionality.As a contrast,a two-dimensional(2D)convolutional neural network and a similar RNN are used to capture dynamic facial appearance changes of temporal sequences.The method was used in te Chinese Natral Audio-'Visual Emotion Database in te Chinese Conference on Pattern Recognition(CCPR)in2016.Experimental results demonstrate that te classification average precision of the proposed metiod is41.15%,which is increased by16.62%compaed with te baseline algorithm offered by the CCPR in2016.It is proved ta t te proposed method has higher accuracy in te identification of emotional information.
基金Supported by the Natural Science Foundation of Shandong Province (ZR2010FM038,ZR2010FL017)
文摘The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.
基金supported by Research on Big Data Technology for New Generation Internet Operators(H04W180609)the second batch of Sichuan Science and Technology Service Industry Development Fund Projects in 2018(18KJFWSF0388).
文摘Due to the increase in the types of business and equipment in telecommunications companies,the performance index data collected in the operation and maintenance process varies greatly.The diversity of index data makes it very difficult to perform high-precision capacity prediction.In order to improve the forecasting efficiency of related indexes,this paper designs a classification method of capacity index data,which divides the capacity index data into trend type,periodic type and irregular type.Then for the prediction of trend data,it proposes a capacity index prediction model based on Recurrent Neural Network(RNN),denoted as RNN-LSTM-LSTM.This model includes a basic RNN,two Long Short-Term Memory(LSTM)networks and two Fully Connected layers.The experimental results show that,compared with the traditional Holt-Winters,Autoregressive Integrated Moving Average(ARIMA)and Back Propagation(BP)neural network prediction model,the mean square error(MSE)of the proposed RNN-LSTM-LSTM model are reduced by 11.82%and 20.34%on the order storage and data migration,which has greatly improved the efficiency of trend-type capacity index prediction.