The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilizatio...The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilization of carbon nutrients and enzyme regulation in the presence of complex nutritionalconditions. Although significant progress has been made in understanding carbon catabolite repression infungi such as Aspergillus nidulans and Magnaporthe oryzae, its role in U. virens remains unclear. Toaddress this knowledge gap, we identified UvCreA, a pivotal component of carbon catabolite repression,in U. virens. Our investigation revealed that UvCreA localized to the nucleus. Deletion of UvCreA resultedin decreased growth and pathogenicity in U. virens. Through RNA-seq analysis, it was found that theknockout of UvCreA led to the up-regulation of 514 genes and down-regulation of 640 genes. Moreover,UvCreA was found to be involved in the transcriptional regulation of pathogenic genes and genesassociated with carbon metabolism in U. virens. In summary, our findings indicated that UvCreA isimportant in fungal development, virulence, and the utilization of carbon sources through transcriptionalregulation, thus making it a critical element of carbon catabolite repression.展开更多
To better understand the mechanism of sugar signaling in rice cell, the suspension-cultured rice cells were transferred from sucrose-containing (+S) to sucrose-free (-S) of MS culture medium, we found that ribosomal R...To better understand the mechanism of sugar signaling in rice cell, the suspension-cultured rice cells were transferred from sucrose-containing (+S) to sucrose-free (-S) of MS culture medium, we found that ribosomal RNAs (rRNAs) were degraded progressively. This suggests that carbon, nitrogen, and phosphate were recycled in this process and the reduction in cellular rRNAs might lead to decreased translation to save energy in response to sugar starvation. Differential screening revealed that two groups of genes, sugar-starvation-repressed (SSR) and sugar-starvation-activated (SSA) genes, were regulated by sugar in an opposing manner. Northern-blot analysis showed that two major hybridization signals of 0.8 and 1.9 kb were induced strongly under sugar starvation. The two populations of genes corresponded with homologs of α-amylases (1.9 kb) and the glycine-rich proteins (GRPs) gene family (0.8 kb), and all were SSA genes. Expression of GRP genes was strongly induced in sugar-starved cells, which suggests that GRPs may help to protect cells against nutritional stress. Treatment of +S and -S cells with the protein kinase (PK) inhibitor staurosporine (St) and the serine/theronine phosphoprotein phosphatases 1 (PP1) and 2A (PP2A) inhibitor okadaic acid (OA) revealed that PP1 and PP2A (PPs) might be involved in increasing SSR gene expression in +S cells, and that activation of the majority of the SSA genes in -S cells might be due to PKs activity. These results suggested that PKs and PPs might be involved in the sugar regulation of SSR and SSA gene expression. An in-gel PK activity assay demonstrated that the activity of two classes of PKs (50 and 66 kDa) may be induced rapidly after transfer of +S cells to -S medium. Following transfer of -S cells to +S medium, a novel class of 38 kDa PK was induced rapidly and showed high activity. The 38 kDa PK might play a role in sugar sensing, and the 50 and 66 kDa PKs might play roles in signal sensing under sugar starvation in rice cells. These results provide valuable information on three classes of protein kinases that might play key roles in sugar sensing and signaling in rice.展开更多
Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcri...Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of IncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells, and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methyla- tion patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these IncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of the protein-coding genes.展开更多
Over the past decades,tRNA was found to be a rich hub of RNA modifications such as 1-methyladenosine and 5-methycytosine modifications and others,holding more than half of all modifications occurring in RNA molecules....Over the past decades,tRNA was found to be a rich hub of RNA modifications such as 1-methyladenosine and 5-methycytosine modifications and others,holding more than half of all modifications occurring in RNA molecules.Moreover,tRNA was discovered to be a source of various small noncoding RNA species,such as the stress induced angiogenin cleaved tRNA halves(tiRNA)or the miRNA like tRNA derived fragments.tRNA cleavage under stress was fist discovered in bacteria and later was found to be conserved across different species,including mammals.Under cellular stress conditions,tRNA undergoes conformational changes and angiogenin cleaves it into 3′and 5′halves.5′tiRNA halves were shown to repress protein translations.tRNA cleavage is thought of to be a cytoprotective mechanism by which cells evade apoptosis,however some data hints to the opposite;that tiRNA are cytotoxic or at least related to apoptosis initiation.tRNA cleavage also was shown to be affected by tRNA modifications via different enzymes in the cytosol and mitochondria.In this review,we will highlight the biology of tRNA cleavage,show the evidence of it being cytoprotective or a marker of cell death and shed a light on its role in disease models and human diseases as well as possible future directions in this field of RNA research.展开更多
LSD1 (KDM1 under the new nomenclature) was the first identified lysine-specific histone demethylase belonging to the flavin-dependent amine oxidase family. Here, we report that AOF1 (KDM1B under the new nomenclatur...LSD1 (KDM1 under the new nomenclature) was the first identified lysine-specific histone demethylase belonging to the flavin-dependent amine oxidase family. Here, we report that AOF1 (KDM1B under the new nomenclature), a mammalian protein related to LSD1, also possesses histone demethylase activity with specificity for H3K4mel and H3K4me2. Like LSD1, the highly conserved SWIRM domain is required for its enzymatic activity. However, AOF1 differs from LSD1 in several aspects. First, AOF1 does not appear to form stable protein complexes containing histone deacetylases. Second, AOF1 is found to localize to chromosomes during the mitotic phase of the cell cycle, whereas LSD1 does not. Third, AOF1 represses transcription when tethered to DNA and this repression activity is independent of its demethylase activity. Structural and functional analyses identified its unique N-terminal Zf-CW domain as essential for the demethylase activity-independent repression function. Collectively, our study identifies AOF1 as the second histone demethylase in the family of flavin-dependent amine oxidases and reveals a demethylase-independent repression function of AOF1.展开更多
Long non-coding RNA (lncRNA) refers to an over 200 nt functional RNA molecule that will not be translated into protein. Previously thought to be dark matters of the genome, lncRNAs have been gradually recognized as cr...Long non-coding RNA (lncRNA) refers to an over 200 nt functional RNA molecule that will not be translated into protein. Previously thought to be dark matters of the genome, lncRNAs have been gradually recognized as crucial gene regulators. Although tremendous progress has been made in animals and human, the study of lncRNAs in plant is still in its infancy. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the achievements that have been made in plant lncRNA identification and functional characterization. Genome-wide identification has uncovered large amount of lncRNAs in Arabidopsis, Rice, Maize and Wheat, and more information from other plant species will be expected with the aid of deep sequencing technologies. Similar to other species, LncRNA-mediated gene regulation also widely exists in plants, even though only a few functionally characterized examples are available. Up to now, at least four divergent lncRNA-mediated regulation mechanisms have been unraveled, including target mimicry, transcription interference, PRC2 associated histone methylation and DNA methylation. lncRNAs may be involved in the regulation of flowering, male sterility, nutrition metabolism, biotic and abiotic stress response in plants.展开更多
Interferon-gamma (IFN-γ) is a major proinflammatory effector and regulatory cytokine produced by activated T cells and NK cells. IFN-γ has been shown to play pivotal roles in fundamental immunological processes su...Interferon-gamma (IFN-γ) is a major proinflammatory effector and regulatory cytokine produced by activated T cells and NK cells. IFN-γ has been shown to play pivotal roles in fundamental immunological processes such as inflammatory reactions, cell-mediated immunity and autoimmunity. A variety of human disorders have now been linked to irregular IFN-γ expression. In order to achieve proper IFN-γ-mediated immunological effects, IFN-γ expression in T cells is subject to both positive and negative regulation. In this study, we report for the first time the negative regulation of IFN-γ expression by Prospero-related Homeobox (Proxl). In Jurkat T cells and primary human CD4+ T cells, Proxl expression decreases quickly upon T cell activation, concurrent with a dramatic increase in IFN-γ expression. Reporter analysis and chromatin immunoprecipitation (CHIP) revealed that Proxl associates with and inhibits the transcription activity of IFN-γ promoter in activated Jurkat T cells. Co-immunoprecipitation and GST pull-down assay demonstrated a direct binding between Proxl and the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which is also an IFN-γ repressor in T cells. By introducing deletions and mutations into Proxl, we show that the repression of IFN-γ promoter by Proxl is largely dependent upon the physical interaction between Proxl and PPARγ. Furthermore, PPARγ antagonist treatment removes Proxl from IFN-γ promoter and attenuates repression of IFN-γ expression by Proxl. These findings establish Proxl as a new negative regulator of IFN-γ expression in T cells and will aid in the understanding of IFN-γ transcription regulation mechanisms.展开更多
In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and ma...In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and manganese peroxidase (MnP) of the fungi was undertaken. Based on the Monod-Jacob operon model, the ligninolytic enzyme would be synthesized in the absence of a related repressor. The repressor is assumed to be active in the presence of ammonia nitrogen, and as combined as co-repressor, it causes the inhibition of enzyme synthesis. The model can explain the mechanism of extracellular ligninolytic enzyme production by white rot fungi. The results,as predicted by the model, correspond closely to those observed in experimental studies. In addition, some light is also shed on unmeasured variables, such as the concentrations of repressor and mRNA that are related to the enzyme synthesis.展开更多
Polycomb repressive complex 2(PRC2)contributes to catalyze the methylation of histone H3 at lysine 27 and plays vital roles in transcriptional silencing and growth development in various organisms.In Magnaporthe oryza...Polycomb repressive complex 2(PRC2)contributes to catalyze the methylation of histone H3 at lysine 27 and plays vital roles in transcriptional silencing and growth development in various organisms.In Magnaporthe oryzae,histone H3K27 is found to associate with altered transcription of in planta induced genes.However,it is still unknown whether and how H3K27me3 modification is involved in pathogenicity to rice and stress response.In this study,we found that core subunits of PRC2,Kmt6-Suz12-Eed,were required for fungal pathogenicity to rice in M.oryzae.Kmt6-Suz12-Eed localized in the nuclei and was necessary for the establishment of H3K27me3 modification.With ChIP-seq analysis,9.0%of genome regions enriched with H3K27me3 occupancy,which corresponded to 1033 genes in M.oryzae.Furthermore,deletion of Kmt6,Suz12 or Eed altered genome-wide transcriptional expression,while the de-repression genes in theΔkmt6 strain were highly associated with H3K27me3 occupancy.Notably,plenty of genes which encode effectors and secreted enzymes,secondary metabolite synthesis genes,and cell wall stress-responsive genes were directly occupied with H3K27me3 modification and de-repression in theΔkmt6 strain.These results elaborately explained how PRC2 was required for pathogenicity,which is closely related to effector modulated host immunity and host environment adaption.展开更多
Coactivators and corepressors regulate transcriptionby controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery andthe chromatin environment. This review consider t...Coactivators and corepressors regulate transcriptionby controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery andthe chromatin environment. This review consider the access of nuclear and steroid receptors to chromatin, theiruse of corepressors and coactivators to modify chromatinstructure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures andtargeted histone modification emerge as central controlling elements for gene expression.展开更多
A pot experiment was conducted to evaluate the effects of phosphorus fertilizer in inhibiting the copper toxicity to maize(Zea mays L.) in neutral purple soil. Results indicated that the growth of the shoot and roots ...A pot experiment was conducted to evaluate the effects of phosphorus fertilizer in inhibiting the copper toxicity to maize(Zea mays L.) in neutral purple soil. Results indicated that the growth of the shoot and roots of maize plant was obviously reduced by copper and the height and biomass were significantly negatively correlated to the application levels of copper (r=-0.899**^-0.994**) at no P and low P (100 mg kg-1).However, the maize biomass was relatively increased and the high Cu (100 and 200 mg kg-1) induced toxicity of maize was greatly alleviated in all treatments with medium P (300 mg kg-1) and high P (500 mg kg-1).To maintain the normal growth of maize plant (≥3.68 g pot-1), the critical application rates of phosphorus fertilizer should be 160, 210, 300 and 500 mg P kg-1 at 10, 50, 100 and 200 mg Cu kg-1 levels of the soil,respectively. The increases in polyphenol oxidase and catalase activities in maize leaf and dehydrogenase activity in roots by phosphorus fertilizer were in the order of medium p>high p>low p>no P. Activities of polyphenol oxidase and catalase were significantly positively correlated to the application levels of copper (r=0.892**~0.924**), whereas that of dehydrogenase was just reverse (r=-0.966**) at no P. Medium and high P repressed the influence of copper on activities of three enzymes. Phosphorus fertilizer reduced the copper concentrations of maize roots and leaf and the change ranges of the P/Cu ratio of maize roots and the P/Cu, N/Cu and K/Cu ratios of maize leaf. The three ratios of maize leaf were 256±71.5, 2643±839 and 1133±440 at normal growth of maize plant, respectively. Soil available Cu could be markedly cut down by application of phosphorus fertilizer, especiallly at high phosphorus level.展开更多
The nitrogen source requirements for riboflavin production by ccpA mutant Bacillus subtilis 24A1/pMX45 were optimized using linear regression. The optimal medium components considered included 8% glucose as carbon sou...The nitrogen source requirements for riboflavin production by ccpA mutant Bacillus subtilis 24A1/pMX45 were optimized using linear regression. The optimal medium components considered included 8% glucose as carbon source, 2% yeast powder, 0.05% MgSO4 ·7H2O, and four types of nitrogen sources : 0.1% yeast extract, 2% soybean powder, 1% corn plasm, and 0.2% ( NH4 ) 2 HPO4 in shake flask tests. Predictive ellipsoid was applied to determining the response values under the optimal levels for riboflavin production and glucose consumption. The optimal concentrations of the four types of nitrogen sources can remedy ammonium assimilative defection of ccpA mutant. Under the optimal conditions, the riboflavin yield increases to more than 5.0 g/L and 8%, glucose can be consumed completely after 60 h.展开更多
Studies have provided indirect evidence that cellulolytic activity of some anaerobic bacteria is repressed by carbohydrates, such as glucose. This effect is known as carbon catabolite repression (CCR). Previous work...Studies have provided indirect evidence that cellulolytic activity of some anaerobic bacteria is repressed by carbohydrates, such as glucose. This effect is known as carbon catabolite repression (CCR). Previous work has found that cellulolytic activity of Clostridium cellulovorans and Eubacterium cellulosolvens are regulated. Many cellulolytic systems of these organisms are expressed only in the presence of cellulose or cellobiose (the disaccharide of cellulose). Some of these cellulose-induced systems also appear subject to CCR when more soluble substrates, such as glucose, are also available. To determine if such repression directly effects cellulolytic activity of C. cellulovorans and E. cellulosolvens, these organisms were cultivated in media containing a glucose analog. We then measured the ability of low levels of analog to inhibit growth of the organisms when cellobiose or cellulose were the energy substrates. Our results found that growth of both C. cellulovorans and E. cellulosolvens in cellobiose-containing medium are strongly inhibited by glucose analogs. In addition, both organisms exhibited delayed and slower growth in cellulose-containing medium when a glucose analog was added. These results provide direct demonstration that these cellulolytic bacteria are subject to CCR. This repression of cellulolysis may affect both of these organisms' ability to serve as industrial platforms for biomass degradation, and may interfere with the contribution of E. cellulosolvens toward animal digestion of cellulose. These results were also in sharp contrast to what has been reported regarding CCR activity in Clostridium cellulolyticum, which actively expresses cellulases in the presence of low levels of glucose.展开更多
Models for quantifying the growth responses of black spruce (Picea mariana (Mill) BSP.) and jack pine (Pinus banksiana Lamb.) to precommercial thinning (PCT) treatments were developed. They accounted for the increased...Models for quantifying the growth responses of black spruce (Picea mariana (Mill) BSP.) and jack pine (Pinus banksiana Lamb.) to precommercial thinning (PCT) treatments were developed. They accounted for the increased rate of stand development arising from PCT treatments through temporal adjustments to the species and site specific mean dominant height-age functions. Analytically, they utilized a relative height growth modifier consistent with observed density-dependent height repression effects. A phenotypic juvenile age-mature age correlation function was used to account for the intrinsic temporal decline in the magnitude of the PCT effect throughout the rotation. The resultant stand development patterns were in accord with theoretical and empirical expectations when the response models were integrated into algorithmic variants of structural stand density management models.展开更多
Financial repression does not suit the needs of economic and financial development in the long run, and interest rate liberalization is a natural choice for the development of China's financial markets'. Based on a ...Financial repression does not suit the needs of economic and financial development in the long run, and interest rate liberalization is a natural choice for the development of China's financial markets'. Based on a comparative analysis of interest rate liberalization processes between some developed countries and China and value assignment to key milestones in interest rate markets, the authors have measured the level of China's interest rate liberalization to be 80.64%, i.e., a complete liberalization has been initially achieved in China with the notable exception of the deposit interest rate market. Deposit interest rate liberalization is poised to be the last step in China's interest rate liberalization process.展开更多
The motive forces of literary creation are closely related to an author’s personal experiences.Milton experienced great losses during his lifetime,which produced deep infl uences on his poetic writing.This thesis,bas...The motive forces of literary creation are closely related to an author’s personal experiences.Milton experienced great losses during his lifetime,which produced deep infl uences on his poetic writing.This thesis,based on Freud’s"repression"and"compensation"theory,analyzes Milton’s psychological state in the creation of Paradise Lost,aiming at exploring infl uences of the poet’s experience of loss on the creation of Satan in his masterpiece.展开更多
Objective Bioremediation technology has gained importance because microbes could be the convenient source of bio-absorption/bioaccumulation of metals from effluent streams. Methods The nickel-resistant bacterial isola...Objective Bioremediation technology has gained importance because microbes could be the convenient source of bio-absorption/bioaccumulation of metals from effluent streams. Methods The nickel-resistant bacterial isolates (NiRBI) were selected from various bacterial isolates from industrial effluent and grown in nutrient broth containing different concentrations of nickel sulfate (0.3-3.0 mmol/L) and their capability of accumulating metal from the medium. Results Well-defined growth of NiRBI was observed in the medium containing up to 2.5 mmol/L of nickel. The isolate was identified using 16S rRNA and closely related to Pseudomonas fragi. Maximum accumulation of nickel (0.59 mg/g dry weight of bacterial cells) was observed when NiRBI was grown in media containing 2 mmol/L of nickel. The protein profile of the NiRBI cellular extract by SDS-PAGE showed two metal stress-induced proteins of molecular weight 48 KD and 18 KD with a simultaneous down regulation of four proteins of 46.7 KD, 42.2 KD, 19.7 KD, and 4.0 KD. Conclusion 48 KD and 18 KD proteins play a role in metal resistance mechanism by NiRBI.展开更多
The influence of high temperature repressing treatment on the segregation of phosphorus in the 93W alloy was carefully investigated by means of Auger electron spectroscope,EPMA, TEM and SEM.The segregation of phosphor...The influence of high temperature repressing treatment on the segregation of phosphorus in the 93W alloy was carefully investigated by means of Auger electron spectroscope,EPMA, TEM and SEM.The segregation of phosphorus has been observed at the tungsten-tungsten grain boundaries,particularly at the tungsten-matrix interphases when the specimens were kept at the temperature in the range of 1200—1500℃ ,followed by furnace cooling.However, no segregation of phosphorus was observed at the interfaces after the specimens were re- pressed at the range of temperature,followed by furnace cooling.After investigation,the dis- locations in the matrix phase of as-repressed specimens directly influenced the phosphorus segregation to the interfaces.After annealing,the mechanical properties were reduced because of the phosphorus segregation at the interface boundaries.展开更多
Objective To study the regulatory roles of SIRT1 on EZH2 expression and the further ef-fects on EZH2's repression of target gene expression. Methods The stable SIRT1 RNAi and Control RNAi HeLa cells were establish...Objective To study the regulatory roles of SIRT1 on EZH2 expression and the further ef-fects on EZH2's repression of target gene expression. Methods The stable SIRT1 RNAi and Control RNAi HeLa cells were established by in-fection with retroviruses expressing shSIRT1 and shLuc respectively followed by puromycin selection. EZH2 protein level was detected by Western blot in either whole cell lysate or the fractional cell extract. Reverse transcription-polymerase chain reaction was performed to detect the mRNA level of EZH2. Cycloheximide was used to treat SIRT1 RNAi and Control RNAi cells for protein stability assay. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of SIRT1, EZH2, and trimethylated H3K27 (H3K27me3) at SATB1 promoter in SIRT1 RNAi and Control RNAi cells. Results Western blot results showed that EZH2 protein level increased upon SIRT1 de-pletion. Fractional extraction results showed unchanged cytoplasmic fraction and increased chromatin fraction of EZH2 protein in SIRT1 RNAi cells. The mRNA level of EZH2 was not affected by knockdown of SIRT1. SIRT1 recruitment was not detected at the promoter region of EZH2 gene locus. The protein stability assay showed that the protein stability of EZH2 increases upon SIRT1 knockdown. Upon SIRT1 depletion, EZH2 and H3K27me3 recruitment at SATB1 promoter increases and the mRNA level of SATB1 decreases. Conclusions Depletion of SIRT1 increases the protein stability of EZH2. The regulation of EZH2 protein level by SIRT1 affects the repressive effects of EZH2 on the target gene expres-sion.展开更多
Aiming at the corrosion issue of oil extraction equipments caused by sulfate-reducing bacteria (SRB) reproducing in oil field affusion system, we studied the dominant strains in the SRB community and the impact of f...Aiming at the corrosion issue of oil extraction equipments caused by sulfate-reducing bacteria (SRB) reproducing in oil field affusion system, we studied the dominant strains in the SRB community and the impact of four ecological factors on the growth of the dominant strains:temperature, pH, mineralization degree and concentration of PAM (Polyacrylamine). The feasibility of repressing the growth of SRB by changing ecological factors was also discussed. The results indicate that Desutfobacter (one genus of SRB) is the preponderant strains of the system, and the order of the effect of four ecological factors is pH 〉 temperature 〉 the concentrations of PAM 〉 mineralization degree. The optimal pH for the highest growth rate of SRB is 8.0. No growth of SRB was observed when pH 〈 4 or pH 〉 12. The optimal temperature for the growth of SRB is 40 ℃ and the ecological amplitude is 20 -50 ℃. The appropriate concentration values of PAM is 400 -800 mg/L, beyond of which the multiplication rate and growth quantity 6f cell decrease obviously. The effect of mineralization degree of SO4^2- , HCO^3- and Na^+ on the growth of SRB has reached an extremely remarkable level, and the change of three ions' concentration in water obviously effects SRB: The optimum values on the main ions in the system are Cl- of 200mg/L, HCO^3- of 900 mg/L,SO4^2- of 400 mg/L, Mg^2+ of 60 mg/L and Na^+ of 900 mg/L. Our results indicate that it is possible to repress the growth of SRB by changing the ecological factors in nil field affusion system.展开更多
基金the Key Projects of Zhejiang Provincial Natural Science Foundation,China(Grant No.LZ23C130002)the National Natural Science Foundation of China(Grant No.32100161)+3 种基金the Zhejiang Science and Technology Major Program on Rice New Variety Breeding,China(Grant No.2021C02063)the Key R&D Project of China National Rice Research Institute(Grant No.CNRRI-2020-04)the Chinese Academy of Agricultural Sciences under the Agricultural Sciences and Technologies Innovation Program,the Youth innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC22)the Joint Open Competitive Project of the Yazhou Bay Seed Laboratory and China National Seed Company Limited(Grant Nos.B23YQ1514 and B23CQ15EP).
文摘The rice false smut disease, caused by Ustilaginoidea virens, has emerged as a significantglobal threat to rice production. The mechanism of carbon catabolite repression plays a crucial role in theefficient utilization of carbon nutrients and enzyme regulation in the presence of complex nutritionalconditions. Although significant progress has been made in understanding carbon catabolite repression infungi such as Aspergillus nidulans and Magnaporthe oryzae, its role in U. virens remains unclear. Toaddress this knowledge gap, we identified UvCreA, a pivotal component of carbon catabolite repression,in U. virens. Our investigation revealed that UvCreA localized to the nucleus. Deletion of UvCreA resultedin decreased growth and pathogenicity in U. virens. Through RNA-seq analysis, it was found that theknockout of UvCreA led to the up-regulation of 514 genes and down-regulation of 640 genes. Moreover,UvCreA was found to be involved in the transcriptional regulation of pathogenic genes and genesassociated with carbon metabolism in U. virens. In summary, our findings indicated that UvCreA isimportant in fungal development, virulence, and the utilization of carbon sources through transcriptionalregulation, thus making it a critical element of carbon catabolite repression.
文摘To better understand the mechanism of sugar signaling in rice cell, the suspension-cultured rice cells were transferred from sucrose-containing (+S) to sucrose-free (-S) of MS culture medium, we found that ribosomal RNAs (rRNAs) were degraded progressively. This suggests that carbon, nitrogen, and phosphate were recycled in this process and the reduction in cellular rRNAs might lead to decreased translation to save energy in response to sugar starvation. Differential screening revealed that two groups of genes, sugar-starvation-repressed (SSR) and sugar-starvation-activated (SSA) genes, were regulated by sugar in an opposing manner. Northern-blot analysis showed that two major hybridization signals of 0.8 and 1.9 kb were induced strongly under sugar starvation. The two populations of genes corresponded with homologs of α-amylases (1.9 kb) and the glycine-rich proteins (GRPs) gene family (0.8 kb), and all were SSA genes. Expression of GRP genes was strongly induced in sugar-starved cells, which suggests that GRPs may help to protect cells against nutritional stress. Treatment of +S and -S cells with the protein kinase (PK) inhibitor staurosporine (St) and the serine/theronine phosphoprotein phosphatases 1 (PP1) and 2A (PP2A) inhibitor okadaic acid (OA) revealed that PP1 and PP2A (PPs) might be involved in increasing SSR gene expression in +S cells, and that activation of the majority of the SSA genes in -S cells might be due to PKs activity. These results suggested that PKs and PPs might be involved in the sugar regulation of SSR and SSA gene expression. An in-gel PK activity assay demonstrated that the activity of two classes of PKs (50 and 66 kDa) may be induced rapidly after transfer of +S cells to -S medium. Following transfer of -S cells to +S medium, a novel class of 38 kDa PK was induced rapidly and showed high activity. The 38 kDa PK might play a role in sugar sensing, and the 50 and 66 kDa PKs might play roles in signal sensing under sugar starvation in rice cells. These results provide valuable information on three classes of protein kinases that might play key roles in sugar sensing and signaling in rice.
文摘Once thought to be transcriptional noise, large non-coding RNAs (IncRNAs) have recently been demonstrated to be functional molecules. The cell-type-specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of IncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells, and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methyla- tion patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these IncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of the protein-coding genes.
文摘Over the past decades,tRNA was found to be a rich hub of RNA modifications such as 1-methyladenosine and 5-methycytosine modifications and others,holding more than half of all modifications occurring in RNA molecules.Moreover,tRNA was discovered to be a source of various small noncoding RNA species,such as the stress induced angiogenin cleaved tRNA halves(tiRNA)or the miRNA like tRNA derived fragments.tRNA cleavage under stress was fist discovered in bacteria and later was found to be conserved across different species,including mammals.Under cellular stress conditions,tRNA undergoes conformational changes and angiogenin cleaves it into 3′and 5′halves.5′tiRNA halves were shown to repress protein translations.tRNA cleavage is thought of to be a cytoprotective mechanism by which cells evade apoptosis,however some data hints to the opposite;that tiRNA are cytotoxic or at least related to apoptosis initiation.tRNA cleavage also was shown to be affected by tRNA modifications via different enzymes in the cytosol and mitochondria.In this review,we will highlight the biology of tRNA cleavage,show the evidence of it being cytoprotective or a marker of cell death and shed a light on its role in disease models and human diseases as well as possible future directions in this field of RNA research.
基金We thank Dr Ramin Shiekhattar (Wistar Institute, USA) for the baculoviruses expressing Flag-LSD1 and Drs Jianguo Song and Degui Chen (Shanghai Institute of Biochemistry and Cell Biol- ogy, China) for anti-HDAC1 antibody and H3K36me2 antibody, respectively. This study was partially supported by grants from the National Natural Science Foundation of China (90919025, 30871381), the Ministry of Science and Technology of China (2009CB918402, 2009CB825601) and the Research Platform for Cell Signaling Networks from the Science and Technology Com- mission of Shanghai Municipality (06DZ22923).
文摘LSD1 (KDM1 under the new nomenclature) was the first identified lysine-specific histone demethylase belonging to the flavin-dependent amine oxidase family. Here, we report that AOF1 (KDM1B under the new nomenclature), a mammalian protein related to LSD1, also possesses histone demethylase activity with specificity for H3K4mel and H3K4me2. Like LSD1, the highly conserved SWIRM domain is required for its enzymatic activity. However, AOF1 differs from LSD1 in several aspects. First, AOF1 does not appear to form stable protein complexes containing histone deacetylases. Second, AOF1 is found to localize to chromosomes during the mitotic phase of the cell cycle, whereas LSD1 does not. Third, AOF1 represses transcription when tethered to DNA and this repression activity is independent of its demethylase activity. Structural and functional analyses identified its unique N-terminal Zf-CW domain as essential for the demethylase activity-independent repression function. Collectively, our study identifies AOF1 as the second histone demethylase in the family of flavin-dependent amine oxidases and reveals a demethylase-independent repression function of AOF1.
文摘Long non-coding RNA (lncRNA) refers to an over 200 nt functional RNA molecule that will not be translated into protein. Previously thought to be dark matters of the genome, lncRNAs have been gradually recognized as crucial gene regulators. Although tremendous progress has been made in animals and human, the study of lncRNAs in plant is still in its infancy. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the achievements that have been made in plant lncRNA identification and functional characterization. Genome-wide identification has uncovered large amount of lncRNAs in Arabidopsis, Rice, Maize and Wheat, and more information from other plant species will be expected with the aid of deep sequencing technologies. Similar to other species, LncRNA-mediated gene regulation also widely exists in plants, even though only a few functionally characterized examples are available. Up to now, at least four divergent lncRNA-mediated regulation mechanisms have been unraveled, including target mimicry, transcription interference, PRC2 associated histone methylation and DNA methylation. lncRNAs may be involved in the regulation of flowering, male sterility, nutrition metabolism, biotic and abiotic stress response in plants.
文摘Interferon-gamma (IFN-γ) is a major proinflammatory effector and regulatory cytokine produced by activated T cells and NK cells. IFN-γ has been shown to play pivotal roles in fundamental immunological processes such as inflammatory reactions, cell-mediated immunity and autoimmunity. A variety of human disorders have now been linked to irregular IFN-γ expression. In order to achieve proper IFN-γ-mediated immunological effects, IFN-γ expression in T cells is subject to both positive and negative regulation. In this study, we report for the first time the negative regulation of IFN-γ expression by Prospero-related Homeobox (Proxl). In Jurkat T cells and primary human CD4+ T cells, Proxl expression decreases quickly upon T cell activation, concurrent with a dramatic increase in IFN-γ expression. Reporter analysis and chromatin immunoprecipitation (CHIP) revealed that Proxl associates with and inhibits the transcription activity of IFN-γ promoter in activated Jurkat T cells. Co-immunoprecipitation and GST pull-down assay demonstrated a direct binding between Proxl and the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which is also an IFN-γ repressor in T cells. By introducing deletions and mutations into Proxl, we show that the repression of IFN-γ promoter by Proxl is largely dependent upon the physical interaction between Proxl and PPARγ. Furthermore, PPARγ antagonist treatment removes Proxl from IFN-γ promoter and attenuates repression of IFN-γ expression by Proxl. These findings establish Proxl as a new negative regulator of IFN-γ expression in T cells and will aid in the understanding of IFN-γ transcription regulation mechanisms.
基金Supported by the National Natural Science Foundation of China (No. 29976038).
文摘In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and manganese peroxidase (MnP) of the fungi was undertaken. Based on the Monod-Jacob operon model, the ligninolytic enzyme would be synthesized in the absence of a related repressor. The repressor is assumed to be active in the presence of ammonia nitrogen, and as combined as co-repressor, it causes the inhibition of enzyme synthesis. The model can explain the mechanism of extracellular ligninolytic enzyme production by white rot fungi. The results,as predicted by the model, correspond closely to those observed in experimental studies. In addition, some light is also shed on unmeasured variables, such as the concentrations of repressor and mRNA that are related to the enzyme synthesis.
基金the National Natural Science Foundation of China(Grant Nos.32170192 and 32000103)Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding(Grant No.2021C02064)+1 种基金Key Research and Development Project of China National Rice Research Institute(Grant No.CNRRI-2020-04)the Chinese Academy of Agricultural Sciences under the‘Elite Youth’Program and the Agricultural Sciences and Technologies Innovation Program.
文摘Polycomb repressive complex 2(PRC2)contributes to catalyze the methylation of histone H3 at lysine 27 and plays vital roles in transcriptional silencing and growth development in various organisms.In Magnaporthe oryzae,histone H3K27 is found to associate with altered transcription of in planta induced genes.However,it is still unknown whether and how H3K27me3 modification is involved in pathogenicity to rice and stress response.In this study,we found that core subunits of PRC2,Kmt6-Suz12-Eed,were required for fungal pathogenicity to rice in M.oryzae.Kmt6-Suz12-Eed localized in the nuclei and was necessary for the establishment of H3K27me3 modification.With ChIP-seq analysis,9.0%of genome regions enriched with H3K27me3 occupancy,which corresponded to 1033 genes in M.oryzae.Furthermore,deletion of Kmt6,Suz12 or Eed altered genome-wide transcriptional expression,while the de-repression genes in theΔkmt6 strain were highly associated with H3K27me3 occupancy.Notably,plenty of genes which encode effectors and secreted enzymes,secondary metabolite synthesis genes,and cell wall stress-responsive genes were directly occupied with H3K27me3 modification and de-repression in theΔkmt6 strain.These results elaborately explained how PRC2 was required for pathogenicity,which is closely related to effector modulated host immunity and host environment adaption.
文摘Coactivators and corepressors regulate transcriptionby controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery andthe chromatin environment. This review consider the access of nuclear and steroid receptors to chromatin, theiruse of corepressors and coactivators to modify chromatinstructure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures andtargeted histone modification emerge as central controlling elements for gene expression.
文摘A pot experiment was conducted to evaluate the effects of phosphorus fertilizer in inhibiting the copper toxicity to maize(Zea mays L.) in neutral purple soil. Results indicated that the growth of the shoot and roots of maize plant was obviously reduced by copper and the height and biomass were significantly negatively correlated to the application levels of copper (r=-0.899**^-0.994**) at no P and low P (100 mg kg-1).However, the maize biomass was relatively increased and the high Cu (100 and 200 mg kg-1) induced toxicity of maize was greatly alleviated in all treatments with medium P (300 mg kg-1) and high P (500 mg kg-1).To maintain the normal growth of maize plant (≥3.68 g pot-1), the critical application rates of phosphorus fertilizer should be 160, 210, 300 and 500 mg P kg-1 at 10, 50, 100 and 200 mg Cu kg-1 levels of the soil,respectively. The increases in polyphenol oxidase and catalase activities in maize leaf and dehydrogenase activity in roots by phosphorus fertilizer were in the order of medium p>high p>low p>no P. Activities of polyphenol oxidase and catalase were significantly positively correlated to the application levels of copper (r=0.892**~0.924**), whereas that of dehydrogenase was just reverse (r=-0.966**) at no P. Medium and high P repressed the influence of copper on activities of three enzymes. Phosphorus fertilizer reduced the copper concentrations of maize roots and leaf and the change ranges of the P/Cu ratio of maize roots and the P/Cu, N/Cu and K/Cu ratios of maize leaf. The three ratios of maize leaf were 256±71.5, 2643±839 and 1133±440 at normal growth of maize plant, respectively. Soil available Cu could be markedly cut down by application of phosphorus fertilizer, especiallly at high phosphorus level.
文摘The nitrogen source requirements for riboflavin production by ccpA mutant Bacillus subtilis 24A1/pMX45 were optimized using linear regression. The optimal medium components considered included 8% glucose as carbon source, 2% yeast powder, 0.05% MgSO4 ·7H2O, and four types of nitrogen sources : 0.1% yeast extract, 2% soybean powder, 1% corn plasm, and 0.2% ( NH4 ) 2 HPO4 in shake flask tests. Predictive ellipsoid was applied to determining the response values under the optimal levels for riboflavin production and glucose consumption. The optimal concentrations of the four types of nitrogen sources can remedy ammonium assimilative defection of ccpA mutant. Under the optimal conditions, the riboflavin yield increases to more than 5.0 g/L and 8%, glucose can be consumed completely after 60 h.
文摘Studies have provided indirect evidence that cellulolytic activity of some anaerobic bacteria is repressed by carbohydrates, such as glucose. This effect is known as carbon catabolite repression (CCR). Previous work has found that cellulolytic activity of Clostridium cellulovorans and Eubacterium cellulosolvens are regulated. Many cellulolytic systems of these organisms are expressed only in the presence of cellulose or cellobiose (the disaccharide of cellulose). Some of these cellulose-induced systems also appear subject to CCR when more soluble substrates, such as glucose, are also available. To determine if such repression directly effects cellulolytic activity of C. cellulovorans and E. cellulosolvens, these organisms were cultivated in media containing a glucose analog. We then measured the ability of low levels of analog to inhibit growth of the organisms when cellobiose or cellulose were the energy substrates. Our results found that growth of both C. cellulovorans and E. cellulosolvens in cellobiose-containing medium are strongly inhibited by glucose analogs. In addition, both organisms exhibited delayed and slower growth in cellulose-containing medium when a glucose analog was added. These results provide direct demonstration that these cellulolytic bacteria are subject to CCR. This repression of cellulolysis may affect both of these organisms' ability to serve as industrial platforms for biomass degradation, and may interfere with the contribution of E. cellulosolvens toward animal digestion of cellulose. These results were also in sharp contrast to what has been reported regarding CCR activity in Clostridium cellulolyticum, which actively expresses cellulases in the presence of low levels of glucose.
文摘Models for quantifying the growth responses of black spruce (Picea mariana (Mill) BSP.) and jack pine (Pinus banksiana Lamb.) to precommercial thinning (PCT) treatments were developed. They accounted for the increased rate of stand development arising from PCT treatments through temporal adjustments to the species and site specific mean dominant height-age functions. Analytically, they utilized a relative height growth modifier consistent with observed density-dependent height repression effects. A phenotypic juvenile age-mature age correlation function was used to account for the intrinsic temporal decline in the magnitude of the PCT effect throughout the rotation. The resultant stand development patterns were in accord with theoretical and empirical expectations when the response models were integrated into algorithmic variants of structural stand density management models.
文摘Financial repression does not suit the needs of economic and financial development in the long run, and interest rate liberalization is a natural choice for the development of China's financial markets'. Based on a comparative analysis of interest rate liberalization processes between some developed countries and China and value assignment to key milestones in interest rate markets, the authors have measured the level of China's interest rate liberalization to be 80.64%, i.e., a complete liberalization has been initially achieved in China with the notable exception of the deposit interest rate market. Deposit interest rate liberalization is poised to be the last step in China's interest rate liberalization process.
文摘The motive forces of literary creation are closely related to an author’s personal experiences.Milton experienced great losses during his lifetime,which produced deep infl uences on his poetic writing.This thesis,based on Freud’s"repression"and"compensation"theory,analyzes Milton’s psychological state in the creation of Paradise Lost,aiming at exploring infl uences of the poet’s experience of loss on the creation of Satan in his masterpiece.
文摘Objective Bioremediation technology has gained importance because microbes could be the convenient source of bio-absorption/bioaccumulation of metals from effluent streams. Methods The nickel-resistant bacterial isolates (NiRBI) were selected from various bacterial isolates from industrial effluent and grown in nutrient broth containing different concentrations of nickel sulfate (0.3-3.0 mmol/L) and their capability of accumulating metal from the medium. Results Well-defined growth of NiRBI was observed in the medium containing up to 2.5 mmol/L of nickel. The isolate was identified using 16S rRNA and closely related to Pseudomonas fragi. Maximum accumulation of nickel (0.59 mg/g dry weight of bacterial cells) was observed when NiRBI was grown in media containing 2 mmol/L of nickel. The protein profile of the NiRBI cellular extract by SDS-PAGE showed two metal stress-induced proteins of molecular weight 48 KD and 18 KD with a simultaneous down regulation of four proteins of 46.7 KD, 42.2 KD, 19.7 KD, and 4.0 KD. Conclusion 48 KD and 18 KD proteins play a role in metal resistance mechanism by NiRBI.
文摘The influence of high temperature repressing treatment on the segregation of phosphorus in the 93W alloy was carefully investigated by means of Auger electron spectroscope,EPMA, TEM and SEM.The segregation of phosphorus has been observed at the tungsten-tungsten grain boundaries,particularly at the tungsten-matrix interphases when the specimens were kept at the temperature in the range of 1200—1500℃ ,followed by furnace cooling.However, no segregation of phosphorus was observed at the interfaces after the specimens were re- pressed at the range of temperature,followed by furnace cooling.After investigation,the dis- locations in the matrix phase of as-repressed specimens directly influenced the phosphorus segregation to the interfaces.After annealing,the mechanical properties were reduced because of the phosphorus segregation at the interface boundaries.
基金Supported by National Natural Science Foundation of China (30721063)National Basic Research Program of China (973 Program) (2005CB522402, 2006CB910403)+1 种基金National Laboratory of Medical Molecular Biology grant (2060204)Beijing municipal government grant (YB20081002301)
文摘Objective To study the regulatory roles of SIRT1 on EZH2 expression and the further ef-fects on EZH2's repression of target gene expression. Methods The stable SIRT1 RNAi and Control RNAi HeLa cells were established by in-fection with retroviruses expressing shSIRT1 and shLuc respectively followed by puromycin selection. EZH2 protein level was detected by Western blot in either whole cell lysate or the fractional cell extract. Reverse transcription-polymerase chain reaction was performed to detect the mRNA level of EZH2. Cycloheximide was used to treat SIRT1 RNAi and Control RNAi cells for protein stability assay. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of SIRT1, EZH2, and trimethylated H3K27 (H3K27me3) at SATB1 promoter in SIRT1 RNAi and Control RNAi cells. Results Western blot results showed that EZH2 protein level increased upon SIRT1 de-pletion. Fractional extraction results showed unchanged cytoplasmic fraction and increased chromatin fraction of EZH2 protein in SIRT1 RNAi cells. The mRNA level of EZH2 was not affected by knockdown of SIRT1. SIRT1 recruitment was not detected at the promoter region of EZH2 gene locus. The protein stability assay showed that the protein stability of EZH2 increases upon SIRT1 knockdown. Upon SIRT1 depletion, EZH2 and H3K27me3 recruitment at SATB1 promoter increases and the mRNA level of SATB1 decreases. Conclusions Depletion of SIRT1 increases the protein stability of EZH2. The regulation of EZH2 protein level by SIRT1 affects the repressive effects of EZH2 on the target gene expres-sion.
文摘Aiming at the corrosion issue of oil extraction equipments caused by sulfate-reducing bacteria (SRB) reproducing in oil field affusion system, we studied the dominant strains in the SRB community and the impact of four ecological factors on the growth of the dominant strains:temperature, pH, mineralization degree and concentration of PAM (Polyacrylamine). The feasibility of repressing the growth of SRB by changing ecological factors was also discussed. The results indicate that Desutfobacter (one genus of SRB) is the preponderant strains of the system, and the order of the effect of four ecological factors is pH 〉 temperature 〉 the concentrations of PAM 〉 mineralization degree. The optimal pH for the highest growth rate of SRB is 8.0. No growth of SRB was observed when pH 〈 4 or pH 〉 12. The optimal temperature for the growth of SRB is 40 ℃ and the ecological amplitude is 20 -50 ℃. The appropriate concentration values of PAM is 400 -800 mg/L, beyond of which the multiplication rate and growth quantity 6f cell decrease obviously. The effect of mineralization degree of SO4^2- , HCO^3- and Na^+ on the growth of SRB has reached an extremely remarkable level, and the change of three ions' concentration in water obviously effects SRB: The optimum values on the main ions in the system are Cl- of 200mg/L, HCO^3- of 900 mg/L,SO4^2- of 400 mg/L, Mg^2+ of 60 mg/L and Na^+ of 900 mg/L. Our results indicate that it is possible to repress the growth of SRB by changing the ecological factors in nil field affusion system.