期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ScSPM-Reranking的高分辨率遥感影像的检索
1
作者 弓永利 朱盼盼 王跃宾 《高技术通讯》 北大核心 2017年第4期335-341,共7页
为了从高分辨率遥感影像中获取详细的地表地物信息,为城市规划、环境监测以及灾情分析提供可靠的数据,进行了高分辨率遥感影像的检索研究,包括对图像的特征提取和图像之间相似度的描述。为了提高图像检索精度,运用了采用稀疏编码(Sc)的... 为了从高分辨率遥感影像中获取详细的地表地物信息,为城市规划、环境监测以及灾情分析提供可靠的数据,进行了高分辨率遥感影像的检索研究,包括对图像的特征提取和图像之间相似度的描述。为了提高图像检索精度,运用了采用稀疏编码(Sc)的空间塔式匹配(Sc SPM)技术和重排序(Reranking)技术,提出了基于Sc SPM结合Reranking(ScSPM-Reranking)的遥感高分辨率影像的检索方法。该方法首先使用Sc SPM提取空间场景的特征,然后结合这些特征使用cityblock距离进行初步检索,最后对初步检索的结果进行Reranking排序,获得高精度的检索结果。同其他检索方法进行了对比实验,实验结果证明,该方法具有较高的检索精度。 展开更多
关键词 高分辨率遥感影像 图像特征描述 图像检索 reranking 稀疏编码(Sc) 空间塔式匹配(SPM)
下载PDF
Contextual modeling on auxiliary points for robust image reranking 被引量:1
2
作者 Ying LI Xiangwei KONG +1 位作者 Haiyan FU Qi TIAN 《Frontiers of Computer Science》 SCIE EI CSCD 2019年第5期1010-1022,共13页
Image reranking is an effective post-processing step to adjust the similarity order in image retrieval. As key components of initialized ranking lists, top-ranked neighborhoods of a given query usually play important ... Image reranking is an effective post-processing step to adjust the similarity order in image retrieval. As key components of initialized ranking lists, top-ranked neighborhoods of a given query usually play important roles in constructing dissimilarity measure. However, the number of pertinent candidates varies with respect to different queries. Thus the images with short lists of ground truth suffer from insufficient contextual information. It consequently introduces noises when using k-nearest neighbor rule to define the context. In order to alleviate this problem, this paper proposes auxiliary points which are added as assistant neighbors in an unsupervised manner. These extra points act on revealing implicit similarity in the metric space and clustering matched image pairs. By isometrically embedding each constructed metric space into the Euclidean space, the image relationships on underlying topological manifolds are locally represented by distance descriptions. Furthermore, by combining Jaccard index with our auxiliary points, we present a contextual modeling on auxiliary points ( CMAP ) method for image reranking. With richer contextual activations, the Jaccard similarity coefficient defined by local distribution achieves more reliable outputs as well as more stable parameters. Extensive experiments demonstrate the robustness and effectiveness of the proposed method. 展开更多
关键词 IMAGE retrieval UNSUPERVISED reranking context construction Jaccard distance QUERY expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部