期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进ResNet101网络的齿轮缺陷检测
1
作者 包从望 江伟 +2 位作者 刘永志 肖钦兰 吴娇 《组合机床与自动化加工技术》 北大核心 2024年第8期145-148,153,共5页
针对视觉技术下的齿轮缺陷检测中,存在检测精度低、特征提取能力弱及检测模型不稳定等问题,提出了一种改进ResNet101网络的齿轮缺陷检测方法。首先,基于ResNet101网络,引入空洞卷积操作,在各个残差层中引入不同比例的膨胀系数,实现齿轮... 针对视觉技术下的齿轮缺陷检测中,存在检测精度低、特征提取能力弱及检测模型不稳定等问题,提出了一种改进ResNet101网络的齿轮缺陷检测方法。首先,基于ResNet101网络,引入空洞卷积操作,在各个残差层中引入不同比例的膨胀系数,实现齿轮图像不同感受野下的特征提取;其次,在各个卷积模块间引入稠密连接操作,保留浅层特征信息,降低了模型训练过程中梯度消失的风险;最后,通过图像样本旋转操作,获得齿轮缺陷样本,通过准确率、召回率、ROC曲线、AUC等参数对所提方法的性能进行验证。实验结果表明,改进后的ResNet101能有效实现齿轮缺陷检测,同时具有更高的稳定性能,可用于齿轮生产过程中,产品质量的实时在线检测。 展开更多
关键词 深度学习 resnet101网络 齿轮缺陷 特征提取
下载PDF
基于Resnet-101模型的烟蚜数量图像识别系统开发
2
作者 孙佳照 李群岭 +4 位作者 林小兴 梁桂广 胡亚杰 李力 丁伟 《植物医学》 2024年第4期26-31,共6页
烟蚜是危害烟草生长的主要害虫之一.烟蚜发生量的准确识别及为害程度的精准分级对指导防控至关重要.本研究通过采集烟草生长过程中烟蚜在烟株上发生数量的图片,补充图像采用锐化、翻转、亮度改变等数据增强方法,构建了烟蚜危害作物图像... 烟蚜是危害烟草生长的主要害虫之一.烟蚜发生量的准确识别及为害程度的精准分级对指导防控至关重要.本研究通过采集烟草生长过程中烟蚜在烟株上发生数量的图片,补充图像采用锐化、翻转、亮度改变等数据增强方法,构建了烟蚜危害作物图像数据集.并对烟蚜数量图片进行3级分类,分为轻度发生、中度发生、重度发生.采用Resnet-101模型进行图像识别训练.根据模型参数结果表明,在Resnet-101训练周期中训练集准确率平均值为85.49%,最高值为87.33%;测试集准确率平均值为80.13%,最高值为89.92%;识别系统在烟草蚜虫数量识别方面平均准确率为83.00%.本研究实现烟蚜数量等级图像识别,为烟草虫害自动化防治系统的开发提供模型支撑. 展开更多
关键词 烟蚜 resnet-101模型 图像识别 数据增强
下载PDF
Multi-class classification of pathological myopia based on fundus photography
3
作者 Jiaqing Zhao Guogang Cao +1 位作者 Jiangnan He Cuixia Dai 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期125-136,共12页
Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.H... Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.However,manual examination of fundus photographs for PM is time-consuming and prone to high error rates.Existing automated detection technologies have yet to study the detailed classification in diagnosing different stages of PM lesions.In this paper,we proposed an intelligent system which utilized Resnet101 technology to multi-categorically diagnose PM by classifying FCPs with different stages of lesions.The system subdivided different stages of PM into eight subcategories,aiming to enhance the precision and efficiency of the diagnostic process.It achieved an average accuracy rate of 98.86%in detection of PM,with an area under the curve(AUC)of 98.96%.For the eight subcategories of PM,the detection accuracy reached 99.63%,with an AUC of 99.98%.Compared with other widely used multi-class models such as VGG16,Vision Transformer(VIT),EfficientNet,this system demonstrates higher accuracy and AUC.This artificial intelligence system is designed to be easily integrated into existing clinical diagnostic tools,providing an efficient solution for large-scale PM screening. 展开更多
关键词 Fundus color photography pathological myopia deep learning resnet101.
下载PDF
基于深度学习的毫米波雷达人体摔倒检测系统研究
4
作者 邬苏秦 王府圣 +2 位作者 周川鸿 朱卫纲 曲卫 《电子设计工程》 2024年第2期181-186,共6页
针对现有摔倒检测系统难以完成全天时检测、存在侵犯被检测人隐私的问题,该文设计了一种基于深度学习的毫米波雷达人体摔倒检测系统,包括信号采集、训练数据生成、智能检测和显示与告警四个部分。该系统利用1642毫米波雷达采集数据,对... 针对现有摔倒检测系统难以完成全天时检测、存在侵犯被检测人隐私的问题,该文设计了一种基于深度学习的毫米波雷达人体摔倒检测系统,包括信号采集、训练数据生成、智能检测和显示与告警四个部分。该系统利用1642毫米波雷达采集数据,对数据进行短时傅里叶变换,经数据增强后构建时频图数据集,通过ResNet101网络进行动作检测。检测为摔倒动作后,向远程接收端发送报警信息。该系统能够检测摔倒、弯腰、下蹲三种动作。实测结果表明,检测准确率为94.3%。 展开更多
关键词 摔倒检测 毫米波雷达 resnet101网络 时频联合分析
下载PDF
A Swin Transformer and Residualnetwork Combined Model for Breast Cancer Disease Multi-Classification Using Histopathological Images
5
作者 Jianjun Zhuang Xiaohui Wu +1 位作者 Dongdong Meng Shenghua Jing 《Instrumentation》 2024年第1期112-120,共9页
Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically... Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer. 展开更多
关键词 breast cancer pathological image swin transformer resnet101 focal loss
下载PDF
基于DeepLab v3+的葡萄叶片分割算法 被引量:10
6
作者 李余康 翟长远 +3 位作者 王秀 袁洪波 张玮 赵春江 《农机化研究》 北大核心 2022年第2期149-155,共7页
为解决自然光照环境下复杂背景葡萄叶片图像的自动分割问题,使用一种DeepLab v3+语义分割算法,完成对葡萄叶片分割。该算法采用ResNet 101作为主干网络进行特征抽取;采用空洞卷积和编码模块进行多尺度特征融合,将ResNet的中间信息和编... 为解决自然光照环境下复杂背景葡萄叶片图像的自动分割问题,使用一种DeepLab v3+语义分割算法,完成对葡萄叶片分割。该算法采用ResNet 101作为主干网络进行特征抽取;采用空洞卷积和编码模块进行多尺度特征融合,将ResNet的中间信息和编码模块的特征组合作为解码输入;采用上采样的方式进行尺度还原,得到语义分割结果。采用Cityscapes的预训练模型,将300张不同环境下、不同类型的葡萄叶片照片作为训练集,以数据增强的方式进行数据扩容,提高模型的鲁棒性和泛化能力。试验结果证明:本方法有较好的分割效果,在数据增强的方式下精确度(ACC)平均值为98.6%,较全卷积神经网络提高7.3%。对不同类型葡萄叶片分割精确度(ACC)值均高于97%,最高可达98.8%,平均交并比(mIOU)值均高于94%,最高可达97.1%。本算法能够较精准地分割自然光照条件下的葡萄叶片图像,可为后续的病害检测和病斑提取提供参考。 展开更多
关键词 葡萄叶片 卷积神经网络 DeepLab v3+ 空洞卷积 resnet 101 自动分割
下载PDF
自然环境下多类水果采摘目标识别的通用改进SSD模型 被引量:86
7
作者 彭红星 黄博 +4 位作者 邵园园 李泽森 张朝武 陈燕 熊俊涛 《农业工程学报》 EI CAS CSCD 北大核心 2018年第16期155-162,共8页
为解决当前自然环境下水果识别率不高、泛化性不强等问题,该文以苹果、荔枝、脐橙、皇帝柑4种水果为研究对象,提出了一种改进的SSD(single shot multi-boxdetector)深度学习水果检测模型:将经典SSD深度学习模型中的VGG16输入模型替换为R... 为解决当前自然环境下水果识别率不高、泛化性不强等问题,该文以苹果、荔枝、脐橙、皇帝柑4种水果为研究对象,提出了一种改进的SSD(single shot multi-boxdetector)深度学习水果检测模型:将经典SSD深度学习模型中的VGG16输入模型替换为Res Net-101模型,并运用迁移学习方法和随机梯度下降算法优化SSD深度学习模型。该文基于Caffe深度学习框架,对自然环境下采集的水果图像进行不同网络模型、不同数据集大小和不同遮挡比例等多组水果识别检测效果对比试验。试验表明:改进的SSD深度学习水果检测模型对4种水果在各种环境下的平均检测精度达到88.4%,高于经典SSD深度学习模型中的86.38%,经过数据增强后平均检测精度可提升至89.53%,在遮挡面积低于50%的情况下F1值能达到96.12%,有较好的泛化性和鲁棒性,可以很好地实现自然环境下多类水果的精准检测,可为农业自动化采摘中的水果识别检测问题提供新的方案。 展开更多
关键词 图像识别 模型 算法 水果检测 深度学习 SSD VGG16 resnet-101
下载PDF
基于残差网络和迁移学习的野生植物图像识别方法 被引量:16
8
作者 李立鹏 师菲蓬 +1 位作者 田文博 陈雷 《无线电工程》 北大核心 2021年第9期857-863,共7页
针对目前传统野生植物识别算法存在的耗时长、精度低等问题,提出一种基于ResNet101网络和迁移学习的方法。将在ImageNet数据集上训练好的参数应用于数据扩充后的野生植物数据集,同时考虑微调第5组卷积块、添加Dropout正则化和批量正则... 针对目前传统野生植物识别算法存在的耗时长、精度低等问题,提出一种基于ResNet101网络和迁移学习的方法。将在ImageNet数据集上训练好的参数应用于数据扩充后的野生植物数据集,同时考虑微调第5组卷积块、添加Dropout正则化和批量正则化技术、优化网络结构参数的方式对原有网络进行改进。测试结果表明,该方法对野生植物图像的识别准确率达到85.6%,较原ResNet101模型识别准确率增加约7个百分点,在提高模型识别精度方面效果较好,具有一定的指导意义。 展开更多
关键词 迁移学习 植物图像识别 resnet101 卷积神经网络
下载PDF
基于改进Faster R-CNN的百香果自动检测 被引量:6
9
作者 涂淑琴 黄健 +3 位作者 林跃庭 李嘉林 刘浩锋 陈志民 《实验室研究与探索》 CAS 北大核心 2021年第11期32-37,共6页
针对自然场景下百香果果实密集,生长环境相对复杂,大规模种植带来人工识别、采摘和估计产量困难等问题,提出了改进Faster R-CNN的百香果目标检测算法,实现无遮挡、遮挡、重叠和背景四类果实自动检测和产量预测。该方法首先采用ResNet网... 针对自然场景下百香果果实密集,生长环境相对复杂,大规模种植带来人工识别、采摘和估计产量困难等问题,提出了改进Faster R-CNN的百香果目标检测算法,实现无遮挡、遮挡、重叠和背景四类果实自动检测和产量预测。该方法首先采用ResNet网络融合FPN对百香果进行多尺度特征提取;然后采用RPN网络提取ROI区域;最后,通过全连接层实现百香果分类和检测。经测试集验证,该方法在4类情况下检测的平均精确率达到87.98%,其平均准确率和召回率分别达到90.79%和90.47%,每幅图片的检测时间在0.178 s左右;产量估算中,其准确率为96.80%。结果表明,基于FPN+ResNet-101特征提取的Faster R-CNN目标检测算法能应用于自然场景下百香果的快速、准确检测和产量估算。 展开更多
关键词 百香果检测 Faster R-CNN resnet-50/101 FPN
下载PDF
基于改进MaskR-CNN模型的秀珍菇表型参数自动测量方法 被引量:2
10
作者 周华茂 王婧 +1 位作者 殷华 陈琦 《智慧农业(中英文)》 CSCD 2023年第4期117-126,共10页
[目的/意义]秀珍菇表型是其品质和栽培环境适应性的反映,但目前人工测量表型参数耗时费力、主观性强,亟需自动化分析手段。[方法]一种基于改进Mask R-CNN的秀珍菇测量模型PG-Mask R-CNN (Pleurotus geesteranus-Mask Region-Based Convo... [目的/意义]秀珍菇表型是其品质和栽培环境适应性的反映,但目前人工测量表型参数耗时费力、主观性强,亟需自动化分析手段。[方法]一种基于改进Mask R-CNN的秀珍菇测量模型PG-Mask R-CNN (Pleurotus geesteranus-Mask Region-Based Convolutional Neural Network),提出以损伤率为指标的裂纹评价方法,并对其进行量化评价。PG-Mask R-CNN模型以Mask R-CNN为主体,通过向特征提取网络Resnet101中添加Sim AM注意力机制,在不增加原始网络参数的情况下提高网络性能;采用改进的特征金字塔进行多尺度融合,融合多层级的信息进行预测;将GIo U (Generalized Intersection over Union)边界框回归损失函数替代原有的Io U (Intersection over Union)损失函数,完善图像重叠度的计算,进一步提高模型性能。[结果和讨论] PG-Mask R-CNN模型目标检测的m AP和m AR分别为84.8%和87.7%,均高于目前主流的YOLACT (You Only Look At Coefficien Ts)、Insta Boost、Query Inst和Mask R-CNN模型;实例分割结果的MRE (Mean Relative Error)为0.90%,均低于其他实例分割模型;PG-Mask R-CNN模型的参数量为51.75 M,略大于原始的Mask R-CNN,均小于其他实例分割模型。对分割后的菌盖和裂纹进行测量,所得结果的MRE分别为1.30%和7.54%,损伤率的MAE (Mean Absolute Error)为0.14%。[结论]本研究提出的PG-Mask R-CNN模型对秀珍菇的菌柄、菌盖及裂纹识别与分割具有较高的准确率,在此基础上能够实现对秀珍菇表型参数的自动化测量,这为后续秀珍菇智慧化育种、智能栽培与分级奠定了技术基础。 展开更多
关键词 秀珍菇 Mask R-CNN SimAM模块 resnet101 表型分析 改进的特征金字塔
下载PDF
级联层叠金字塔网络模型的服装关键点检测 被引量:2
11
作者 李维乾 张紫云 +1 位作者 王海 张艺 《计算机系统应用》 2020年第4期254-259,共6页
服装关键点的检测对服饰分类、推荐和检索效果具有重要的作用,然而实际服装数据库中存在大量形变及背景复杂的服饰图片,导致现有服装分类模型的识别率和服装推荐、检索的效果较差.为此,本文提出了一种级联层叠金字塔网络模型CSPN(Cascad... 服装关键点的检测对服饰分类、推荐和检索效果具有重要的作用,然而实际服装数据库中存在大量形变及背景复杂的服饰图片,导致现有服装分类模型的识别率和服装推荐、检索的效果较差.为此,本文提出了一种级联层叠金字塔网络模型CSPN(Cascaded Stacked Pyramid Network),将目标检测方法与回归方法相结合,首先采用Faster R-CNN结构对服装目标区域进行识别,然后基于ResNet-101结构生成的多层级特征图,构建级联金字塔网络,融合服饰图像的多尺度高低层信息,解决图片形变及复杂背景下服装关键点识别准确度不高等问题.实验结果表明,CSPN模型在DeepFashion数据集上较其他三种模型对服装关键点具有较高识别度. 展开更多
关键词 服装关键点检测 层叠金字塔模型 FASTER R-CNN resnet-101
下载PDF
基于卷积神经网络的PCB缺陷图像识别 被引量:7
12
作者 瞿栋 汪鹏宇 +2 位作者 黄允 徐海达 张健滔 《计量与测试技术》 2021年第8期21-23,共3页
PCB缺陷图像检测是确保PCB生产质量的重要环节,但传统的人工PCB缺陷检测具有劳动强度大、工作效率低等不足。为此,本文研究了一种基于卷积神经网络的PCB缺陷图像识别方法,建立了包括三种PCB缺陷和无缺陷图像的数据集,基于ResNet101网络... PCB缺陷图像检测是确保PCB生产质量的重要环节,但传统的人工PCB缺陷检测具有劳动强度大、工作效率低等不足。为此,本文研究了一种基于卷积神经网络的PCB缺陷图像识别方法,建立了包括三种PCB缺陷和无缺陷图像的数据集,基于ResNet101网络模型搭建了PCB缺陷图像识别分类模型。引入迁移学习的方法,基于在大数据集上充分训练好的模型结合PCB图像数据集,并训练该PCB缺陷图像识别模型。实验结果表明,ResNet101模型对无缺陷PCB图像和三类常见PCB缺陷图像的平均识别准确率达到91.98%,验证了该模型对PCB图像识别分类的有效性。 展开更多
关键词 PCB缺陷识别 迁移学习 resnet101 卷积神经网络
下载PDF
Faster RCNN模型在坯布疵点检测中的应用 被引量:12
13
作者 晏琳 景军锋 李鹏飞 《棉纺织技术》 CAS 北大核心 2019年第2期24-27,共4页
探讨Faster RCNN模型在坯布疵点检测中的应用效果。在原始Faster RCNN的基础上,采用提取特征效果更好的深度残差网络,先使用残差网络进行坯布图像特征提取,再通过区域生成网络及Fast RCNN检测网络对坯布的疵点目标进行分类与检测。试验... 探讨Faster RCNN模型在坯布疵点检测中的应用效果。在原始Faster RCNN的基础上,采用提取特征效果更好的深度残差网络,先使用残差网络进行坯布图像特征提取,再通过区域生成网络及Fast RCNN检测网络对坯布的疵点目标进行分类与检测。试验对比了Faster RCNN分别与VGG16、ResNet101结合时的检测结果,并讨论了不同参数对结果的影响。试验结果表明:该方法可以有效解决坯布疵点检测问题,检测准确率能够达到99.6%。认为:基于Faster RCNN目标检测与ResNet101卷积神经网络相结合的方法能够满足坯布生产过程中对于表面疵点进行准确检测的需求。 展开更多
关键词 FASTER RCNN resnet101 卷积神经网络 坯布疵点检测 IOU 特征
下载PDF
基于深度卷积网络的葡萄簇检测与分割 被引量:7
14
作者 娄甜田 杨华 胡志伟 《山西农业大学学报(自然科学版)》 CAS 北大核心 2020年第5期109-119,共11页
[目的]在果园场景下,簇粘连、杂物遮挡给高精度葡萄簇检测与分割造成很大难题。[方法]该文以真实种植场景下的葡萄簇为研究对象,以相机拍摄图像为数据源,提出基于2大骨干网络R50、R101与2种任务网络Mask RCNN、Cascade Mask R-CNN交叉... [目的]在果园场景下,簇粘连、杂物遮挡给高精度葡萄簇检测与分割造成很大难题。[方法]该文以真实种植场景下的葡萄簇为研究对象,以相机拍摄图像为数据源,提出基于2大骨干网络R50、R101与2种任务网络Mask RCNN、Cascade Mask R-CNN交叉结合的多种葡萄簇检测与分割并行化模型。对5个品种137张共2020个实例标注葡萄簇个体进行研究,为丰富数据集、提升模型泛化能力,对原始数据集随机进行改变亮度、加入高斯噪声及翻转180°操作,共获得标注图片685张。为探究不同骨干网络对模型检测与分割的影响状况,选取R50与R101对输入图像分别进行特征提取,并在Mask R-CNN和Cascade Mask R-CNN两大任务网络上进行试验。[结果]对于检测任务,Mask R-CNN-R50在AP0.75指标上比Mask R-CNN-R101提升22.3%;对于分割任务,Cascade Mask R-CNNR50在各AP指标上比Cascade Mask R-CNN-R101提升2%~13.5%。为验证学习率超参数对预测结果影响,选用6个不同学习率在Mask R-CNN-R50与Cascade Mask R-CNN-R50模型上进行试验,结果表明,随着学习率的增加,检测与分割各AP指标均先增加后减小;为探究模型的鲁棒性,将测试集图片分为深度分离、浆果粘连、杂物遮挡3大类并进行可视化分析,结果表明,Cascade Mask R-CNN-R50模型在3种场景下分割与检测效果最佳,Mask RCNN-R101效果最差。[结论]综合分析,本文Cascade Mask R-CNN-R50模型可更为精确、有效地对不同种植场景葡萄簇进行分割与检测,其可为后续葡萄自动化采摘提供模型支撑。 展开更多
关键词 目标检测 实例分割 Mask R-CNN Cascade Mask R-CNN resnet50 resnet101
下载PDF
基于改进R-FCN的交通标志检测 被引量:4
15
作者 喻清挺 喻维超 喻国平 《计算机工程》 CAS CSCD 北大核心 2021年第12期285-290,298,共7页
为在交通标志检测过程中同时满足精度和速度的需求,建立一种改进的基于区域全卷积网络(R-FCN)的交通标志检测模型。通过K-means聚类算法对数据集进行分析,选择合适的锚点框。对特征提取网络ResNet101进行结构简化,只使用前25层来提取特... 为在交通标志检测过程中同时满足精度和速度的需求,建立一种改进的基于区域全卷积网络(R-FCN)的交通标志检测模型。通过K-means聚类算法对数据集进行分析,选择合适的锚点框。对特征提取网络ResNet101进行结构简化,只使用前25层来提取特征,以缩短检测时间。在模型中引入可变形卷积和可变形位置敏感RoI池化层,以提高模型对交通标志的感应能力。模型训练过程中使用在线困难样本挖掘策略从而减少简单样本数量。在交通标志检测数据集GTSDB上的实验结果表明,该模型对交通标志位置信息较敏感,AP50和AP75指标分别达到97.8%和94.7%,检测时间缩至48 ms,检测精度与速度优于Faster R-CNN、R-FCN等模型。 展开更多
关键词 交通标志 区域全卷积网络 resnet101网络 可变形卷积 可变形位置敏感RoI池化
下载PDF
基于光流和深度运动图的行为识别算法 被引量:1
16
作者 季雄武 张永辉 张健 《海南大学学报(自然科学版)》 CAS 2020年第2期116-123,共8页
为了融合不易受光照等环境因素影响的深度信息和RGB视频序列中丰富的纹理信息,提出一种基于光流和深度运动图(Depth Motion Map,DMM)的人体行为识别算法.首先从RGB视频序列获取彩色信息(RGB视频帧)和光流信息,并且从同步的深度视频序列... 为了融合不易受光照等环境因素影响的深度信息和RGB视频序列中丰富的纹理信息,提出一种基于光流和深度运动图(Depth Motion Map,DMM)的人体行为识别算法.首先从RGB视频序列获取彩色信息(RGB视频帧)和光流信息,并且从同步的深度视频序列获取深度信息,以增强特征互补性,其次把3种特征信息分别作为基于ResNet101的空间流网络、时间流网络和深度流网络的输入,通过LSTMs进行特征融合,最后将特征送入Softmax层得到每个行为类别的概率值.实验结果表明,在具有挑战性的UTD-MHAD数据集和MSR Daily Activity 3D数据集上的行为识别准确率分别为94.86%和97.69%,在与该领域中的同类算法比较中表现优异. 展开更多
关键词 人体行为识别 光流 RGB 深度运动图像 resnet101 LSTMs
下载PDF
基于改进Deeplab V3+网络的语义分割 被引量:8
17
作者 席一帆 孙乐乐 +1 位作者 何立明 吕悦 《计算机系统应用》 2020年第9期178-183,共6页
深度学习的语义分割在计算机视觉领域中有非常广阔的发展前景,但许多分割效果较好网络模型占用内存大和处理单张图片耗时长.针对这个问题,把Deeplab V3+模型的骨干网(ResNet101)的瓶颈单元设计为1D非瓶颈单元,且对空洞空间金字塔池化模... 深度学习的语义分割在计算机视觉领域中有非常广阔的发展前景,但许多分割效果较好网络模型占用内存大和处理单张图片耗时长.针对这个问题,把Deeplab V3+模型的骨干网(ResNet101)的瓶颈单元设计为1D非瓶颈单元,且对空洞空间金字塔池化模块(Atrous Spatial Pyramid Pooling,ASPP)的卷积层进行分解.该算法能大幅度降低Deeplab V3+网络的参数量,提高网络推理速度.基于PASCAL VOC 2012数据集进行对比实验,实验结果显示改进网络模型拥有更快的处理速度和更优的分割效果,且消耗更少的内存. 展开更多
关键词 语义分割 Deeplab V3+模型 骨干网(resnet101) 1D非瓶颈单元 空洞空间金字塔池化(ASPP)
下载PDF
改进残差网络结合迁移学习的SAR目标识别 被引量:1
18
作者 崔亚楠 吴建平 +1 位作者 朱辰龙 闫相如 《计算机技术与发展》 2022年第5期1-6,共6页
合成孔径雷达(SAR)图像的目标识别对地面和海面目标获取具有重大意义。实现SAR图像目标自动解释,提高图像目标识别的准确率成为SAR图像研究的热点问题。为准确获取SAR图像中的目标信息,解决深度神经网络训练小样本SAR图像过程中细节特... 合成孔径雷达(SAR)图像的目标识别对地面和海面目标获取具有重大意义。实现SAR图像目标自动解释,提高图像目标识别的准确率成为SAR图像研究的热点问题。为准确获取SAR图像中的目标信息,解决深度神经网络训练小样本SAR图像过程中细节特征丢失严重,网络易出现过拟合等问题,该研究提出一种基于RCF(ResNet101-CBAM-FPN)神经网络模型来提取SAR图像特征。将ResNet101作为主干网络模型用于特征提取,在主干网络模型中加入卷积注意力模块引导神经网络有针对性地提取SAR图像关键特征信息。然后结合特征金字塔网络,实现神经网络高层特征与底层特征融合,丰富特征信息。最后融合迁移学习思想,通过数据相对充足的仿真SAR图像对RCF网络模型进行预训练。将预训练获取的模型参数迁移至目标网络,作为目标网络的初始化参数,并使用目标网络对SAR图像进行迭代训练。实验结果表明,该方法能有效提升小样本数据SAR图像的识别精度,在MSTAR数据集上达到99.60%的识别率。 展开更多
关键词 resnet101 迁移学习 合成孔径雷达 卷积注意力模块 特征金字塔网络
下载PDF
基于卷积神经网络的颅内出血检测 被引量:4
19
作者 周长才 刘爽 王昕 《长春工业大学学报》 CAS 2021年第5期469-473,共5页
使用训练集的80%训练了基于ResNet-101的预测模型,剩余20%作为测试集用于评估5种出血类型的效能。实验结果表明,每一张图像的预测准确率为94.6%,每一类的平均预测准确率达98.1%。
关键词 卷积神经网络 resnet-101 颅内出血 深度学习
下载PDF
基于改进的Faster R-CNN目标人物检测 被引量:8
20
作者 周华平 殷凯 +2 位作者 桂海霞 姚尚军 丁金虎 《无线电通信技术》 2020年第6期712-716,共5页
针对图像中人物的检测,为了能够更加精确地检测定位图像中的人物,在基于Faster R-CNN框架的基础上提出了一种改进其特征网络ResNet-101的方法来进行人物深层特征的提取。在实验阶段,通过配置GPU环境以调用GPU加速和并行处理器来提高训... 针对图像中人物的检测,为了能够更加精确地检测定位图像中的人物,在基于Faster R-CNN框架的基础上提出了一种改进其特征网络ResNet-101的方法来进行人物深层特征的提取。在实验阶段,通过配置GPU环境以调用GPU加速和并行处理器来提高训练速度,实验结果表明,模型迭代1000次后,所提出的改进的特征网络模型相较于原始特征网络模型在准确度上提高了1.6%,平均检测精度提高了5.1%,说明改进的算法降低了人物的的漏检测率和误检测率,相对于原算法具有更好的准确度和识别精度。 展开更多
关键词 目标检测 Faster R-CNN resnet-101
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部