Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.H...Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.However,manual examination of fundus photographs for PM is time-consuming and prone to high error rates.Existing automated detection technologies have yet to study the detailed classification in diagnosing different stages of PM lesions.In this paper,we proposed an intelligent system which utilized Resnet101 technology to multi-categorically diagnose PM by classifying FCPs with different stages of lesions.The system subdivided different stages of PM into eight subcategories,aiming to enhance the precision and efficiency of the diagnostic process.It achieved an average accuracy rate of 98.86%in detection of PM,with an area under the curve(AUC)of 98.96%.For the eight subcategories of PM,the detection accuracy reached 99.63%,with an AUC of 99.98%.Compared with other widely used multi-class models such as VGG16,Vision Transformer(VIT),EfficientNet,this system demonstrates higher accuracy and AUC.This artificial intelligence system is designed to be easily integrated into existing clinical diagnostic tools,providing an efficient solution for large-scale PM screening.展开更多
Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically...Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer.展开更多
基金supported by the Natural National Science Foundation of China(62175156)the Science and technology innovation project of Shanghai Science and Technology Commission(22S31903000)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27)。
文摘Pathological myopia(PM)is a severe ocular disease leading to blindness.As a traditional noninvasive diagnostic method,fundus color photography(FCP)is widely used in detecting PM due to its highfidelity and precision.However,manual examination of fundus photographs for PM is time-consuming and prone to high error rates.Existing automated detection technologies have yet to study the detailed classification in diagnosing different stages of PM lesions.In this paper,we proposed an intelligent system which utilized Resnet101 technology to multi-categorically diagnose PM by classifying FCPs with different stages of lesions.The system subdivided different stages of PM into eight subcategories,aiming to enhance the precision and efficiency of the diagnostic process.It achieved an average accuracy rate of 98.86%in detection of PM,with an area under the curve(AUC)of 98.96%.For the eight subcategories of PM,the detection accuracy reached 99.63%,with an AUC of 99.98%.Compared with other widely used multi-class models such as VGG16,Vision Transformer(VIT),EfficientNet,this system demonstrates higher accuracy and AUC.This artificial intelligence system is designed to be easily integrated into existing clinical diagnostic tools,providing an efficient solution for large-scale PM screening.
基金By the National Natural Science Foundation of China(NSFC)(No.61772358),the National Key R&D Program Funded Project(No.2021YFE0105500),and the Jiangsu University‘Blue Project’.
文摘Breast cancer has become a killer of women's health nowadays.In order to exploit the potential representational capabilities of the models more comprehensively,we propose a multi-model fusion strategy.Specifically,we combine two differently structured deep learning models,ResNet101 and Swin Transformer(SwinT),with the addition of the Convolutional Block Attention Module(CBAM)attention mechanism,which makes full use of SwinT's global context information modeling ability and ResNet101's local feature extraction ability,and additionally the cross entropy loss function is replaced by the focus loss function to solve the problem of unbalanced allocation of breast cancer data sets.The multi-classification recognition accuracies of the proposed fusion model under 40X,100X,200X and 400X BreakHis datasets are 97.50%,96.60%,96.30 and 96.10%,respectively.Compared with a single SwinT model and ResNet 101 model,the fusion model has higher accuracy and better generalization ability,which provides a more effective method for screening,diagnosis and pathological classification of female breast cancer.