期刊文献+
共找到151,790篇文章
< 1 2 250 >
每页显示 20 50 100
基于ResNet神经网络的花卉图像分类研究
1
作者 赵友山 《电脑知识与技术》 2024年第32期23-25,共3页
本研究基于计算机视觉和深度学习技术,提出了一种高效、准确的花卉图像识别与分类方法,采用基于残差网络(ResNet)的ResNet50卷积神经网络模型。相较于传统的人工识别方式,该方法显著提高了识别速度与准确性,同时降低了成本。实验验证表... 本研究基于计算机视觉和深度学习技术,提出了一种高效、准确的花卉图像识别与分类方法,采用基于残差网络(ResNet)的ResNet50卷积神经网络模型。相较于传统的人工识别方式,该方法显著提高了识别速度与准确性,同时降低了成本。实验验证表明,ResNet50模型在花卉识别和分类任务中表现出卓越性能:验证集准确率达82.771%,Kappa系数为0.825,表明该方法具有出色的一致性和相对于随机性的显著改进。此外,本文对ResNet模型的结构和性能进行了深入分析和讨论,为未来在花卉分类领域的研究和应用提供了有益的指导。本研究对推动植物学领域的数字化、智能化发展具有重要意义,为相关研究提供了有益参考。 展开更多
关键词 深度学习 resnet 花卉识别 花卉分类
下载PDF
基于ResNet神经网络的情报用户隐式反馈关注度预测
2
作者 吴俊杰 黄志良 +1 位作者 张谦 向仍湘 《空天预警研究学报》 2022年第3期201-205,共5页
针对用户在浏览态势情报后反馈少或无反馈,导致用户需求难以有效获取的问题,提出了基于ResNet50用户关注度预测方法.该方法充分挖掘用户的隐式反馈信息,通过ResNet50神经网络迁移学习方式,以用户关注度作为切入点,利用眼动追踪技术采集... 针对用户在浏览态势情报后反馈少或无反馈,导致用户需求难以有效获取的问题,提出了基于ResNet50用户关注度预测方法.该方法充分挖掘用户的隐式反馈信息,通过ResNet50神经网络迁移学习方式,以用户关注度作为切入点,利用眼动追踪技术采集眼动数据,生成眼动热力图,将用户对情报的关注度预测映射为神经网络对图像的分类问题.实验结果表明,优化后预测模型的准确性得到了提升. 展开更多
关键词 resnet神经网络 情报用户 隐式反馈 关注度
下载PDF
基于Resnet神经网络的地层核素能谱快速识别方法研究 被引量:1
3
作者 卢大宇 周书民 陈锐 《世界核地质科学》 CAS 2023年第2期360-367,共8页
铀裂变瞬发中子测井技术在实际操作中易受地层环境影响,致使铀矿的解释含量误差较大,故亟需发展地层环境核素快速识别方法,实现环境校正。文章针对传统的伽马能谱核素识别方法预处理繁琐、时间复杂度高、识别效率低、易受众多不可控因... 铀裂变瞬发中子测井技术在实际操作中易受地层环境影响,致使铀矿的解释含量误差较大,故亟需发展地层环境核素快速识别方法,实现环境校正。文章针对传统的伽马能谱核素识别方法预处理繁琐、时间复杂度高、识别效率低、易受众多不可控因素影响等问题,提出了一种基于Resnet神经网络模型的伽马能谱核素识别方法。在网络的构建上,根据伽马能谱数据的特点,选取小卷积核多层卷积的结构,保护输入能谱特征,减少参数数量,提高网络的识别精准度与训练效率。并通过蒙特卡罗(MC)方法获得核素能谱仿真数据,将一维能谱信号转化为二维能谱灰度图像作为神经网络的训练样本,进行对比分析实验。实验结果表明该方法可精准地识别单源、双源及三源核素,从而更好地保护能谱数据的原始特征,在保证识别精度的同时提高识别方法的运算效率。 展开更多
关键词 resnet 神经网络 核素识别 蒙特卡罗方法
下载PDF
基于小波降噪的神经网络盾构泥水分离系统参数预测方法
4
作者 周翠红 周富强 +1 位作者 刘兆赫 翟志国 《土木与环境工程学报(中英文)》 北大核心 2025年第1期11-17,共7页
泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技... 泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技术,采集盾构机掘进参数(掘进速度、刀盘转速和总推进力等)和泥水分离系统运行参数(进浆量、进浆密度和进浆黏度等),通过Cook距离离群检测和小波阈值去噪处理提升数据质量;以双旋流分离密度比值、黏度比值等12个参数为输入,排浆量、排浆密度和排浆黏度为输出,建立BP神经网络泥水分离系统参数的预测模型,并选取3个不同地层环段进行预测对比分析。预测结果表明:预测平均绝对误差均在5%以内,该预测模型在复合地层下仍具有较高的准确性。 展开更多
关键词 盾构隧道 泥水分离 COOK距离 小波去噪 BP神经网络 参数预测
下载PDF
基于改进神经网络的医院通信安全态势感知方法
5
作者 邓从香 《电子设计工程》 2025年第1期166-170,175,共6页
针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模... 针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模型。利用花朵授粉算法完成改进RBF神经网络训练。通过径向基函数对输入数据进行非线性变换,将得到的权值进行加权求和,得到当前通信网络信号的安全态势预测结果。实验结果显示,应用该文方法的医院通信网络异常信息可在1 s内完成感知。 展开更多
关键词 改进神经网络 医院通信 安全态势 小波消噪 信号去噪 花朵授粉算法
下载PDF
基于图卷积神经网络的WSN零动态攻击检测方法
6
作者 崔玉礼 黄丽君 《太原学院学报(自然科学版)》 2025年第1期78-84,共7页
零动态攻击与一般攻击方式相比,隐蔽性更强,因此更不容易被发现。以往常规的检测方法在检测这种攻击方式时,漏检率和误检率较高。针对上述问题,研究一种基于图卷积神经网络的WSN零动态攻击检测方法。基于零动态攻击原理,以信道状态信息... 零动态攻击与一般攻击方式相比,隐蔽性更强,因此更不容易被发现。以往常规的检测方法在检测这种攻击方式时,漏检率和误检率较高。针对上述问题,研究一种基于图卷积神经网络的WSN零动态攻击检测方法。基于零动态攻击原理,以信道状态信息作为采集源,利用CSI-Tools工具实现CSI数据包采集。从CSI数据包中分离出幅值数据和相位数据,针对前者实施去噪处理,针对后者实施校准处理。从幅值数据和相位数据中提取4个特征,以特征为输入,构建图结构,利用图卷积神经网络实现无线传感网络零动态攻击检测。结果表明:基于图卷积神经网络的攻击检测方法的漏检率和误检率相对更低,由此说明该方法对零动态攻击检测更为有效,能够实现更为准确的检测。 展开更多
关键词 图卷积神经网络 无线传感网络 CSI数据 零动态攻击
下载PDF
基于轻量化卷积神经网络的桥梁斜拉索PE护套损伤识别方法
7
作者 刘啸宇 黄永 +1 位作者 徐峰 李惠 《土木与环境工程学报(中英文)》 北大核心 2025年第1期167-178,共12页
深度神经网络和计算机视觉技术近年来在结构健康监测中发挥了越来越重要的作用。利用无人机航拍采集的桥梁斜拉索损伤图像数据,研究基于深度学习技术的斜拉索PE护套损伤识别方法。为实现在较低运算能力设备上对大跨度桥梁斜拉索表面局... 深度神经网络和计算机视觉技术近年来在结构健康监测中发挥了越来越重要的作用。利用无人机航拍采集的桥梁斜拉索损伤图像数据,研究基于深度学习技术的斜拉索PE护套损伤识别方法。为实现在较低运算能力设备上对大跨度桥梁斜拉索表面局部损伤的智能快速识别,解决传统深度卷积神经网络的运算效率相对较低、模型参数规模较大的问题,提出轻量化处理的区域推荐型卷积神经网络模型。介绍区域推荐网络与其轻量化改进方法的理论基础,分析轻量化模型处理的必要性,其能在保证识别精度的前提下降低模型训练与预测的设备性能需求,达到节约计算资源与时间的目的;通过数据增广等多手段解决损伤样本数据量不足的问题,设置对比试验,统计分析结果,验证了轻量化神经网络模型的优越性。结果表明,轻量化网络在牺牲少量识别准确度的前提下,能够在较大程度上实现对模型复杂度与计算量的改进,在工程应用中能有效拓展神经网络的实用性。 展开更多
关键词 桥梁斜拉索 智能损伤识别 轻量化神经网络 计算机视觉 深度学习
下载PDF
基于图像处理和BP神经网络的森林防火无人机系统
8
作者 杨静 《农机化研究》 北大核心 2025年第2期205-209,共5页
对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时... 对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时仅22 s,比普通神经网络159 s缩短很多。这表明,BP神经网络是更可靠且更有效率的火灾识别方案。 展开更多
关键词 森林防火 无人机 图像处理 BP神经网络
下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
9
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 BP神经网络 模糊化
下载PDF
基于注意力循环神经网络的联合深度推荐模型
10
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
下载PDF
基于PSO-BP神经网络的5G基站位置确定方法
11
作者 杜莹 韦原原 蒲欢欢 《测绘工程》 2025年第1期47-52,67,共7页
5G基站位置的确定对室内定位服务和网络安全有着重要意义。首先对5G信道状态信息CSI进行Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立5G CSI和距离的映射关系,最后基于模型预测的距离实现对5G... 5G基站位置的确定对室内定位服务和网络安全有着重要意义。首先对5G信道状态信息CSI进行Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立5G CSI和距离的映射关系,最后基于模型预测的距离实现对5G AP的探测。实验采用室外探测室外和室内5G AP的实测数据,结果表明,与BP神经网络相比,基于PSO-BP神经网络的距离预测值更加精确,室外探测室外和室内5G AP的精度分别达到了0.32 m和0.96 m。随着测量方向数的提升,5G AP的定位精度不断提升。当方向数达到5个时,精度提升最为显著。 展开更多
关键词 信道状态信息 AP探测 粒子群优化 BP神经网络
下载PDF
基于改进卷积神经网络的机器人避障路径规划
12
作者 王思越 宋骊颖 刘俊森 《电子设计工程》 2025年第1期27-30,35,共5页
由于机器人在运动过程中,无法及时更新机器人位置方向和坐标,使得目标不是全局最小点,导致机器人无法有效避障。为此,提出了基于改进卷积神经网络的机器人避障路径规划方法。使用基于改进卷积神经网络的双线性内插方法,计算目标点坐标... 由于机器人在运动过程中,无法及时更新机器人位置方向和坐标,使得目标不是全局最小点,导致机器人无法有效避障。为此,提出了基于改进卷积神经网络的机器人避障路径规划方法。使用基于改进卷积神经网络的双线性内插方法,计算目标点坐标。通过动态窗口法评估函数,计算扩展距离。构建极大值损失函数,通过递减学习,使类别内的特征聚合度和类别间差异性达到最大。通过机器人在环境中的运动来估计机器人位置,计算机器人的平移速度、角速度,并更新机器人位置方向和坐标。构建改进后排斥函数,计算神经元中心点到目标神经元中心点的距离,规划避障路径。实验结果表明,该方法能够避过全部障碍物,且规划的起始点和目标点之间距离与实际距离一致。 展开更多
关键词 改进卷积神经网络 机器人避障 路径规划 全局最小点
下载PDF
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
13
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 短时客流预测 改进麻雀搜索算法 长短时记忆神经网络 组合模型
下载PDF
一种基于改进ResNet18神经网络的苹果叶片病害识别方法
14
作者 陈诗瑶 孔淳 +2 位作者 冯峰 孙博 王志军 《山东农业科学》 北大核心 2024年第10期174-180,共7页
为有效提升苹果叶片病害识别的精度和效率,实现病害的及时防治进而提高苹果产量,本研究提出一种基于改进ResNet18神经网络的苹果叶片病害识别方法,可在提升模型识别性能的同时减少参数量和模型尺寸。首先,改进ResNet模型的残差结构,以... 为有效提升苹果叶片病害识别的精度和效率,实现病害的及时防治进而提高苹果产量,本研究提出一种基于改进ResNet18神经网络的苹果叶片病害识别方法,可在提升模型识别性能的同时减少参数量和模型尺寸。首先,改进ResNet模型的残差结构,以减少参数量,实现模型轻量化;其次,引入坐标注意力(CA)机制并进行迁移学习,进一步提升模型的泛化性能。将改进ResNet18模型与原始ResNet18神经网络进行对比实验,结果发现,改进模型的准确率提升了1.53个百分点,但模型参数量减少为原始模型的50.84%。表明本研究提出的改进ResNet18模型可有效识别苹果叶片病害,且方便移动端搭载。 展开更多
关键词 苹果叶片病害识别 卷积神经网络 resnet18模型 残差结构 坐标注意力机制 迁移学习
下载PDF
基于Light-Resnet卷积神经网络的电力设备监测数值识别算法
15
作者 孔志恒 谭冲 +2 位作者 唐培耀 胡成博 郑敏 《中国电力》 CSCD 北大核心 2024年第8期206-213,共8页
在智能电网中,精确监测输电、配电及供电关键设备的运行状态对在线运维至关重要。面对人工抄录和巡检的低效,以及监测装置数字化升级的复杂安装、高成本和长周期等挑战,结合图像采集装置与图像处理技术,根据计算资源合理分配任务,开发... 在智能电网中,精确监测输电、配电及供电关键设备的运行状态对在线运维至关重要。面对人工抄录和巡检的低效,以及监测装置数字化升级的复杂安装、高成本和长周期等挑战,结合图像采集装置与图像处理技术,根据计算资源合理分配任务,开发了一种基于Light-Resnet数值识别算法,该算法通过D-Add损失函数优化网络训练过程,实现电力设备监测数据的远程读取。实验表明:Light-Resnet以6090的参数量在MNIST数据集获得了98.8%的严格准确率,结合边端协同机制,终端侧能耗降低了20.73%。这一算法不仅证明了自身在资源受限环境下的适应性和高效性,同时D-Add损失函数的设计也显著提升了网络的准确度。 展开更多
关键词 light-resnet D-add 边端协同机制 数值识别 智能电网
下载PDF
一种基于改进ResNet18神经网络的玉米叶片病害识别方法
16
作者 马春悦 郭秀茹 +2 位作者 王琛 孙博 王志军 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期356-366,共11页
为了研究出一种快速、高效的玉米病害识别方法,针对玉米叶片病害识别问题,本文以灰斑病、南方锈病、小斑病、锈病、叶斑等5种常见的玉米叶片病害为研究对象,提出一种基于改进ResNet18神经网络的玉米病害识别方法。通过在ResNet18网络的... 为了研究出一种快速、高效的玉米病害识别方法,针对玉米叶片病害识别问题,本文以灰斑病、南方锈病、小斑病、锈病、叶斑等5种常见的玉米叶片病害为研究对象,提出一种基于改进ResNet18神经网络的玉米病害识别方法。通过在ResNet18网络的基础上引入金字塔卷积(Pyramidal Convolution)可以在玉米复杂的生长环境中利用多尺度的特征信息来提高模型对单叶片的识别和定位能力,以有效加快模型的收敛速度并显著提高模型的病害识别准确率;将残差结构的激活函数替换为PReLU(Parametric Rectified Linear Unit)激活函数避免模型训练过程中的神经元死亡。在收集的真实玉米叶片病害数据集上进行的实验表明,与原始ResNet18残差网络相比,本文提出的模型在玉米叶片病害识别的准确率、精确度、召回率、F1分数分别提升了1.86%、1.78%、1.78%、1.87%;模型的参数尺寸减小了1.85%。该模型可作为一种检测复杂生长环境下玉米叶片病害的有效方法。 展开更多
关键词 玉米叶片 病害识别 resnet18 金字塔卷积 PReLU
下载PDF
基于图卷积神经网络的节点分类方法研究综述 被引量:5
17
作者 张丽英 孙海航 +1 位作者 孙玉发 石兵波 《计算机科学》 CSCD 北大核心 2024年第4期95-105,共11页
节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经... 节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经网络的优点,已成为图节点分类方法中最活跃的一个研究分支。对基于图卷积神经网络的节点分类方法的研究进展进行综述,首先介绍图的相关概念、节点分类的任务定义和常用的图数据集;然后探讨两类经典图卷积神经网络——谱域和空间域图卷积神经网络,以及图卷积神经网络在节点分类领域面临的挑战;之后从模型和数据两个视角分析图卷积神经网络在节点分类任务中的研究成果和未解决的问题;最后对基于图卷积神经网络的节点分类研究方向进行展望,并总结全文。 展开更多
关键词 图数据 节点分类 神经网络 图卷积神经网络
下载PDF
基于ResNet34卷积神经网络的垃圾分类识别小程序
18
作者 李玉信 王嘉欣 刘力军 《电脑与信息技术》 2024年第2期1-3,共3页
人类社会的生产力水平正在以指数级提升,导致垃圾数量疯涨,因此当下如何处理大量的垃圾成为一个棘手的问题。在大量堆积的垃圾中既有可以回收利用的可回收垃圾,也有能造成污染的有害垃圾,如果对其不加以区分就丢弃,对于资源是一种浪费... 人类社会的生产力水平正在以指数级提升,导致垃圾数量疯涨,因此当下如何处理大量的垃圾成为一个棘手的问题。在大量堆积的垃圾中既有可以回收利用的可回收垃圾,也有能造成污染的有害垃圾,如果对其不加以区分就丢弃,对于资源是一种浪费。为了解决在垃圾分类过程中出现的错误分类的问题,构建了基于ResNet34卷积神经网络的垃圾分类识别模型。根据垃圾分类的需求对现有的网络模型做出了相应的调整,优化模型主要参数的同时采用了迁移学习的方式训练模型使其在测试集上的准确率达到了87%。选择与微信小程序结合,向ResNet34模型导入数据集并训练40种垃圾类别,同时通过Https协议远程调用服务器上运行的模型,从而在小程序上实现对垃圾的快速精准分类。 展开更多
关键词 垃圾分类 resnet34 微信小程序
下载PDF
基于小波变换和GA-BP神经网络的电力电缆故障定位 被引量:3
19
作者 徐先峰 马志雄 +2 位作者 姚景杰 李芷菡 王轲 《电气工程学报》 CSCD 北大核心 2024年第2期146-155,共10页
由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程... 由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程度和波动次数的基础上,选择多贝西小波(Daubechies wavelet 6,Db6)作为小波基函数,对于各故障位置,采集正向故障行波的α模分量,并对其进行小波分解。选取在d1尺度下的模极大值点作为特征值,同时将故障距离作为标签值,从而构建了训练和测试样本数据集;利用遗传算法(Genetic algorithm,GA)的种群进化和全局最优搜寻能力来改善误差逆传播(Back propagation,BP)网络对初始权重敏感的缺点,并使用优化后的权值、阈值重新对BP神经网络进行训练和预测,最后通过与传统双端行波定位算法、BP算法、粒子群优化BP算法(Particle swarm optimization BP,PSO-BP)相比较,证明了所提方法在测距性能方面的优越性。 展开更多
关键词 小波变换 模极大值 双端测距 BP神经网络 PSO-BP神经网络 GA-BP神经网络
下载PDF
基于神经算子与类物理信息神经网络智能求解新进展 被引量:2
20
作者 李道伦 沈路航 +7 位作者 查文舒 邢燕 吕帅君 汪欢 李祥 郝玉祥 陈东升 陈恩源 《力学学报》 EI CAS CSCD 北大核心 2024年第4期875-889,共15页
深度学习通过多层神经网络对数据进行学习,不仅能揭示潜藏信息,还能很好地解决复杂非线性问题.偏微分方程(PDE)是描述自然界中许多物理现象的基本数学模型.两者的碰撞与融合,产生了基于深度学习的PDE智能求解方法,它具有高效、灵活和通... 深度学习通过多层神经网络对数据进行学习,不仅能揭示潜藏信息,还能很好地解决复杂非线性问题.偏微分方程(PDE)是描述自然界中许多物理现象的基本数学模型.两者的碰撞与融合,产生了基于深度学习的PDE智能求解方法,它具有高效、灵活和通用等优点.文章聚焦PDE智能求解方法,以是否求解单一问题为判定依据,把求解方法分为两类:神经算子方法和类物理信息神经网络(PINN)方法,其中神经算子方法用于求解一类具有相同数学特征的PDE问题,类PINN方法用于求解单一问题.对于神经算子方法,从数据驱动和物理约束两个方面展开介绍,分析研究现状并指出现有方法的不足.对于类PINN方法,首先介绍了基础PINN的3种改进方法 (基于数据优化、基于模型优化和基于领域知识优化),然后详细介绍了基于物理驱动的两类解决方案:基于传统PDE离散方程的智能求解方案和无网格的非离散求解方案.最后总结技术路线,探讨现有研究存在的不足,给出可行的研究方案.最后,简要介绍智能求解程序发展现状,并对未来研究方向给出建议. 展开更多
关键词 神经网络 PDE智能求解 神经算子 网格离散 物理驱动
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部