期刊文献+
共找到319,204篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Innovative Decisions of Supermarket Private Brands and Designated Manufacturers
1
作者 Jia Chen 《Proceedings of Business and Economic Studies》 2024年第1期111-116,共6页
One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as signif... One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as significant contributors to supermarket growth.However,a pivotal developmental challenge for supermarkets is navigating the innovative decision-making process between private brands and designated manufacturers.This paper aims to investigate the innovative decisions between private brands and designated manufacturers,along with the relevant promotional strategies employed during entry into the United States market. 展开更多
关键词 SUPERMARKET Private brand Brand manufacturer Innovative decisions
下载PDF
Post processing of additive manufactured Mg alloys:Current status,challenges,and opportunities
2
作者 Nooruddin Ansari Fatima Ghassan Alabtah +1 位作者 Mohammad I.Albakri Marwan Khraisheh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1283-1310,共28页
Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the med... Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed. 展开更多
关键词 Magnesium alloy Additive manufacturing POST-PROCESSING Heat treatment HIP
下载PDF
Quasi-static and dynamic compressive behaviour of additively manufactured Menger fractal cube structures
3
作者 Damith Mohotti Dakshitha Weerasinghe +3 位作者 Madhusha Bogahawaththa Hongxu Wang Kasun Wijesooriya Paul JHazell 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期39-49,共11页
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi... This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers. 展开更多
关键词 Additive manufacturing Fractal geometries Menger cube Energy absorption QUASI-STATIC
下载PDF
Additive manufactured osseointegrated screws with hierarchical design
4
作者 Wenbo Yang Hao Chen +6 位作者 Haotian Bai Yifu Sun Aobo Zhang Yang Liu Yuchao Song Qing Han Jincheng Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期206-235,共30页
Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s... Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength. 展开更多
关键词 Bone screws Additive manufacturing Architecture design Surface modification
下载PDF
Characterization and Modeling of Mechanical Properties of Additively Manufactured Coconut Fiber-Reinforced Polypropylene Composites
5
作者 George Mosi Bernard W. Ikua +1 位作者 Samuel K. Kabini James W. Mwangi 《Advances in Materials Physics and Chemistry》 CAS 2024年第6期95-112,共18页
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene... In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy. 展开更多
关键词 Additive manufacturing Artificial Neural Network Mechanical Properties Natural Fibers POLYPROPYLENE
下载PDF
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets
6
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Research Progress of Additive Manufacturing Technology in Energetic Material Field at Home and Abroad
7
作者 Runpeng Jiang 《Journal of Materials Science and Chemical Engineering》 2024年第3期51-59,共9页
As a subversive manufacturing technology, additive manufacturing technology has many technical advantages such as high freedom of design and not limited by complex structure of parts. The application of additive manuf... As a subversive manufacturing technology, additive manufacturing technology has many technical advantages such as high freedom of design and not limited by complex structure of parts. The application of additive manufacturing technology to the charge molding of energetic materials will subvert the traditional manufacturing concept of energetic materials, realize the advanced charge design concept, shorten the research and development time of weapons and equipment, and improve the comprehensive performance of weapons and equipment, which is of great significance for the rapid development of high-tech weapons and equipment. This paper analyzes the research progress of additive manufacturing technology in the field of energetic materials at home and abroad and puts forward some suggestions for future research of this technology. . 展开更多
关键词 Additive manufacturing Technology Energetic Material research Progress
下载PDF
Mechanical behavior and response mechanism of porous metal structures manufactured by laser powder bed fusion under compressive loading
8
作者 Xuanming Cai Yang Hou +6 位作者 Wei Zhang Zhiqiang Fan Yubo Gao Junyuan Wang Heyang Sun Zhujun Zhang Wenshu Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期737-749,共13页
Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur... Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization. 展开更多
关键词 AlSi10Mg additive manufacture energy absorption characteristics damage by deformation mechanical behavior
下载PDF
Additively manufactured Ti–Ta–Cu alloys for the next-generation load-bearing implants
9
作者 Amit Bandyopadhyay Indranath Mitra +4 位作者 Sushant Ciliveri Jose D Avila William Dernell Stuart B Goodman Susmita Bose 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期353-374,共22页
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m... Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants. 展开更多
关键词 TI6AL4V load-bearing implants additive manufacturing 3D printing antibacterial performance
下载PDF
Research progress in CALPHAD assisted metal additive manufacturing
10
作者 Ya-qing Hou Xiao-qun Li +5 位作者 Wei-dong Cai Qing Chen Wei-ce Gao Du-peng He Xue-hui Chen Hang Su 《China Foundry》 SCIE EI CAS CSCD 2024年第4期295-310,共16页
Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology ba... Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology based on high energy sources has become a key factor influencing the future development of MAM.The calculation of phase diagrams(CALPHAD)is an essential method and tool for constructing multi-component phase diagrams by employing experimental phase diagrams and Gibbs free energy models of simple systems.By combining with the element mobility data and non-equilibrium phase transition model,it has been widely used in the analysis of traditional metal materials.The development of CALPHAD application technology for MAM is focused on the compositional design of printable materials,the reduction of metallurgical imperfections,and the control of microstructural attributes.This endeavor carries considerable theoretical and practical significance.This paper summarizes the important achievements of CALPHAD in additive manufacturing(AM)technology in recent years,including material design,process parameter optimization,microstructure evolution simulation,and properties prediction.Finally,the limitations of applying CALPHAD technology to MAM technology are discussed,along with prospective research directions. 展开更多
关键词 metal additive manufacturing CALPHAD integrated computational material engineering powder bed fusion material design microstructure simulation
下载PDF
UK manufacturers'sales decline 10%in Q12024
11
《China Textile》 2024年第3期58-58,共1页
UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest incre... UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector. 展开更多
关键词 SALES QUARTER manufactureR
下载PDF
Research on the Design and Application of Virtual and Real Integrated Training Platform Based on Intelligent Manufacturing
12
作者 Xiayun Liu Dakang Li +1 位作者 Xuan Liang Lingfang Wu 《Journal of Electronic Research and Application》 2024年第3期34-41,共8页
In this paper,we built a robot training platform using virtual simulation software,and the robot assembly,handling,and palletizing were realized.The workstation includes an industrial robot,gas control unit,track func... In this paper,we built a robot training platform using virtual simulation software,and the robot assembly,handling,and palletizing were realized.The workstation includes an industrial robot,gas control unit,track function module,assembly function module,palletizing function module,vision module,etc.,and robot movement is achieved through language programming.The platform provides conditions for the practical ability training of application-oriented talents. 展开更多
关键词 Intelligent manufacturing Training platform Virtual simulation
下载PDF
Research on Machine Tool Fault Diagnosis and Maintenance Optimization in Intelligent Manufacturing Environments
13
作者 Feiyang Cao 《Journal of Electronic Research and Application》 2024年第4期108-114,共7页
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin... In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects. 展开更多
关键词 Intelligent manufacturing Machine tool fault diagnosis Predictive maintenance Big data Machine learning System integration
下载PDF
Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives 被引量:5
14
作者 Chenghang Zhang Zhuo Li +2 位作者 Jikui Zhang Haibo Tang Huaming Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期425-461,共37页
The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that... The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that any component does not have, such as high specific stiffness and specific strength, good dimensional stability, outstanding shock absorption performance, excellent electromagnetic shielding and hydrogen storage characteristics, etc. As an emerging manufacturing technology, additive manufacturing(AM) is based on the design of threedimensional(3D) data model to obtain 3D objects through layer-by-layer processing, which possesses the advantages of short manufacturing cycle, high material utilization rate, high degree of design freedom, excellent mechanical properties and the ability to fabricate complex structural components. Combining the high stiffness and high strength properties of MMCs and the technical advantages of AM forming complex structural parts with high performance, the prepared AM MMCs have huge potential advantages and broad application prospects in new high-tech industries such as automobile, aerospace, consumer electronics and biomedicine, etc. This paper reviews the research progress in the field of AM MMCs, mainly introduces the main AM technologies, including selective laser melting(SLM), electron beam selective melting(EBSM), laser engineered net shaping(LENS) and wire and arc additive manufacturing(WAAM). The formation mechanism and control methods of the typical defects including balling effect, porosity, poor fusion, loss of alloy elements and cracks produced during AM are discussed. The main challenges of AM MMCs are proposed from the aspects of composition design and the preparation of powder raw material. The relationship between the microstructure and mechanical properties, corrosion performance and biocompatibility of AM MMCs are elaborated in detail. The application potential of AM MMCs in various fields at present and in the future is introduced. Finally, the development direction and urgent problems to be solved in the AM MMCs are prospected. 展开更多
关键词 Magnesium matrix composites Additive manufacturing DEFECTS MICROSTRUCTURE PROPERTIES
下载PDF
Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution 被引量:8
15
作者 Jianwei LI Youmin QIU +9 位作者 Junjie YANG Yinying SHENG Yanliang YI Xun ZENG Lianxi CHEN Fengliang YIN Jiangzhou SU Tiejun ZHANG Xin TONG Bin GUO 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期217-229,共13页
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac... Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively. 展开更多
关键词 AZ31 magnesium alloy Wire and arc additive manufacturing(WAAM) Grain refinement Microstructure Intergranular corrosion
下载PDF
The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review 被引量:1
16
作者 Rui Xu Chuanqing Chen +4 位作者 Jiapeng Sun Yulong He Xin Li Ming-Hui Lu Yanfeng Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期416-452,共37页
Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These meta... Multistable mechanical metamaterials are a type of mechanical metamaterials with special features,such as reusability,energy storage and absorption capabilities,rapid deformation,and amplified output forces.These metamaterials are usually realized by series and/or parallel of bistable units.They can exhibit multiple stable configurations under external loads and can be switched reversely among each other,thereby realizing the reusability of mechanical metamaterials and offering broad engineering applications.This paper reviews the latest research progress in the design strategy,manufacture and application of multistable mechanical metamaterials.We divide bistable structures into three categories based on their basic element types and provide the criterion of their bistability.Various manufacturing techniques to fabricate these multistable mechanical metamaterials are introduced,including mold casting,cutting,folding and three-dimensional/4D printing.Furthermore,the prospects of multistable mechanical metamaterials for applications in soft driving,mechanical computing,energy absorption and wave controlling are discussed.Finally,this paper highlights possible challenges and opportunities for future investigations.The review aims to provide insights into the research and development of multistable mechanical metamaterials. 展开更多
关键词 multistable mechanical metamaterials bistable units mechanical properties design and manufacture
下载PDF
Enhanced strength-ductility synergy in a wire and arc additively manufactured Mg alloy via tuning interlayer dwell time 被引量:1
17
作者 Dong Ma Chunjie Xu +6 位作者 Shang Sui Jun Tian Can Guo Xiangquan Wu Zhongming Zhang Dan Shechtman Sergei Remennik 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4696-4709,共14页
Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc ... Strength-ductility trade-off is a common issue in Mg alloys. This work proposed that a synergistic enhancement of strength and ductility could be achieved through tuning interlayer dwell time(IDT) in the wire and arc additive manufacturing(WAAM) process of Mg alloy.The thermal couples were used to monitor the thermal history during the WAAM process. Additionally, the effect of different IDTs on the microstructure characteristics and resultant mechanical properties of WAAM-processed Mg alloy thin-wall were investigated. The results showed that the stable temperature of the thin-wall component could reach 290 ℃ at IDT=0s, indicating that the thermal accumulation effect was remarkable. Consequently, unimodal coarse grains with an average size of 39.6 μm were generated, and the resultant room-temperature tensile property was poor. With the IDT extended to 60s, the thermal input and thermal dissipation reached a balance, and the stable temperature was only 170 ℃, closing to the initial temperature of the substrate. A refined grain structure with bimodal size distribution was obtained. The remelting zone had fine grains with the size of 15.2 μm, while the arc zone owned coarse grains with the size of 24.5 μm.The alternatively distributed coarse and fine grains lead to the elimination of strength-ductility trade-off. The ultimate tensile strength and elongation of the samples at IDT=60s are increased by 20.6 and 75.0% of those samples at IDT=0s, respectively. The findings will facilitate the development of additive manufacturing processes for advanced Mg alloys. 展开更多
关键词 Wire arc additive manufacturing Interlayer dwell time Strength-ductility Magnesium alloys
下载PDF
Research perspective and prospective of additive manufacturing of biodegradable magnesium-based materials 被引量:1
18
作者 Qingyun Fu Wenqi Liang +6 位作者 Jiaxin Huang Weihong Jin Baisong Guo Ping Li Shulan Xu Paul K.Chu Zhentao Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1485-1504,共20页
Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusio... Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusion,and commercial processing have limitations in manufacturing components with a complex shape/structure,and these processes may produce defects such as cavities and gas pores which can degrade the properties and usefulness of the products.Compared to conventional techniques,additive manufacturing(AM)can be used to precisely control the geometry of workpieces made of different Mg-based materials with multiple geometric scales and produce desirable medical products for orthopedics,dentistry,and other fields.However,a detailed and thorough understanding of the raw materials,manufacturing processes,properties,and applications is required to foster the production of commercial Mg-based biomedical components by AM.This review summarizes recent advances and important issues pertaining to AM of Mg-based biomedical products and discusses future development and application trends. 展开更多
关键词 Magnesium-based materials Additive manufacturing Wires and powders Biomedical metallic materials Medical devices
下载PDF
Research on Maintenance Information Management System for Distributed Manufacture System 被引量:2
19
作者 张之敬 戴琳 +1 位作者 陶俐言 周娟 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期194-196,共3页
An architecture and design of a maintenance information management system for distributed manufacture system is presented in this paper, and its related key technologies are studied and implemented also. A frame of th... An architecture and design of a maintenance information management system for distributed manufacture system is presented in this paper, and its related key technologies are studied and implemented also. A frame of the maintenance information management system oriented human-machine monitoring is designed, and using object-oriented method, a general maintenance information management system based on SQL server engineering database and adopted client/server/database three-layer mode can be established. Then, discussions on control technologies of maintenance information management system and remote distributed diagnostics and maintenance system are emphasized. The system is not only able to identify and diagnose faults of distributed manufacture system quickly, improve system stability, but also has intelligent maintenance functions. 展开更多
关键词 distributed manufacture system maintenance information management system intelligent maintenance
下载PDF
Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds 被引量:2
20
作者 Yanen Wang Ying Guo +3 位作者 Qinghua Wei Xinpei Li Kang Ji Kun Zhang 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第3期541-567,共27页
Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still c... Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still challenging to ensure the integrity,physiological function and regeneration ability of stratified OC scaffolds in clinical application.Biomimetic OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC tissue.As a consequence,the researches on biomimetic design to achieve the tissue function of each layer,and additive manufacture(AM)to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable progress.In this review,the design methods of biomaterial and structure as well as computer-aided design,and performance prediction of biopolymer-based OC scaffolds are presented;then,the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized;finally,the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds. 展开更多
关键词 Osteochondral tissue Biomimetic scaffold Additive manufacture Integrated manufacture
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部